2022 Fiscal Year Final Research Report
Solvability for a nonlinear heat equation with singular initial data
Project/Area Number |
19K14569
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | Shizuoka University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 半線形熱方程式 / 準自己相似性 / 可解性 / 初期値の特異性 / 初期値の空間減衰 / 藤田指数 |
Outline of Final Research Achievements |
This research project is devoted to the solvability and the behavior of solutions for general semilinear heat equation which does not possess the self-similarity. Although the solvability for a semilinear heat equation in previous studies is based on the scale invariant property for the equation, this property is not expected for a wide class of semilinear heat equations except for a power and an exponential type nonlinearity. Principal investigator focused on a generalization of the self-similar transformation for power type semilinear heat equation, and characterized the solvability for a general semilinear heat equation by using a quasi self-similar transformation.
|
Free Research Field |
非線形偏微分方程式論
|
Academic Significance and Societal Importance of the Research Achievements |
本研究課題では、冪乗型や指数型半線形熱方程式に対して知られている自己相似変換を一般化した準自己相似変換に着目し、半線形熱方程式の研究を行った。特に準自己相似性が半線形熱方程式の可解性に応用可能であり、方程式の解の存在および非存在に対して精緻な結果が得られることを示した。これは準自己相似性の有用性を表すものであり、これまでの自己相似性に基づく解析手法を、一般の半線形熱方程式に対して拡張可能であることを示唆するものである。
|