2021 Fiscal Year Final Research Report
Research and development of B-WIM with self-calibration function for road bridges
Project/Area Number |
19K15071
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 22020:Structure engineering and earthquake engineering-related
|
Research Institution | Tokyo Institute of Technology (2020-2021) University of Yamanashi (2019) |
Principal Investigator |
Takeya Kouichi 東京工業大学, 環境・社会理工学院, 特任講師 (70803526)
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 橋梁 / B-WIM / 振動応答 / 加速度 / 軸重 / ニューラルネットワーク / ウェーブレット変換 / 数値積分 |
Outline of Final Research Achievements |
This research has been an issue in Bridge Weigh-in-Motion (B-WIM), which detects traffic weight by using the vibration response of the bridge. We have developed a B-WIM (1) with simplified measurement equipment and (2) a system that automates the acquisition of the influence line of the bridge (calibration). In previous B-WIMs, number of required sensors Number of caused an increase in system maintenance costs. In this research, the car's enter-exit time in the bridge was detected by one accelerometer installed in the center of the girder. We proposed a method that estimates the axle weight of a traffic car by integrating the same acceleration data. Focusing on the route bus that runs regularly, the calibration was automated by detecting the route bus from the acceleration of the bridge.
|
Free Research Field |
振動工学
|
Academic Significance and Societal Importance of the Research Achievements |
多くの道路橋の劣化損傷とその補修が地方公共団体の大きな課題となっており,その主な原因となる交通荷重を把握することは効率的な維持補修計画のために非常に重要である.しかしB-WIMの運用には多くの作業員・初期費用・時間が必要なことが課題となっていた.本研究では,データ分析にAI技術を活用して車種,速度などの交通情報を橋の加速度データから判断し,加速度の数値積分とフィルタリングによる適切な補正によって得られる橋のたわみから車の重量推定やB-WIMシステムのキャリブレーションを常時行うことで,環境や構造応答の長期変動の影響を考慮した点に意義があると考えている.
|