2022 Fiscal Year Final Research Report
Artificial intelligence-based analysis of chest X-ray to predict hemodynamic parameters
Project/Area Number |
19K17559
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 53020:Cardiology-related
|
Research Institution | Mie University |
Principal Investigator |
Toba Shuhei 三重大学, 医学部附属病院, 助教 (20806111)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 人工知能 / 胸部X線写真 / 先天性心疾患 / 血行動態 |
Outline of Final Research Achievements |
We developed artificial intelligence to predict pulmonary to systemic flow ratio, an important hemodynamic index for patients with congenital heart disease, from chest radiographs, and applied for a patent. In addition, we have developed an artificial intelligence to predict hemodynamics from chest radiographs in the field of adult cardiology, and an artificial intelligence that automatically classifies pediatric 12-lead electrocardiograms. The results were presented in a journal and at national and international conferences.
|
Free Research Field |
先天性心疾患
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、人工知能により胸部X線写真から血行動態(カテーテル検査結果)を予測できることを世界で初めて示し、それが小児・成人を問わず様々な血行動態指標に応用可能であることを示した。より低侵襲かつ簡便な胸部X線写真から血行動態を正確に予測できれば、小児・成人循環器診療において、正確な血行動態評価を頻回に行うことができるようになり、より優れた医療の実現につながる。
|