• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Data-driven Filter Design and Implementation for Snapshot Hyperspectral Imaging

Research Project

  • PDF
Project/Area Number 19K20307
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionNational Institute of Informatics

Principal Investigator

ZHENG YINQIANG  国立情報学研究所, コンテンツ科学研究系, 准教授 (30756896)

Project Period (FY) 2019-04-01 – 2021-03-31
KeywordsSpectral Imaging / Deep Learning / Filter Selection / Filter Design
Outline of Final Research Achievements

The research purpose of this project is to find the best spectral response functions for accurate multispectral-to-hyperspectral reconstruction using deep neural networks, and when necessary, implement the deeply learned filters by using film manufacturing technologies. We have tried to indentify the best camera spectral response curves from a given camera database, and design the optimal IR-cut filter for RGB-based spectral reconstruction. We have also examined fusion based spectral reconstruction, and found the best camera spectral response curves. Finally, we have gone beyond spectral reconstruction and examined the effect of spectral response fuctions for high-level task of scene classification.

Free Research Field

Computer Vision

Academic Significance and Societal Importance of the Research Achievements

深層学習を用いてイメージングハードウェアの最適化はとても挑戦的な研究課題です。本研究では、カメラの感度曲線の最適化方法を開発する上、スペクトル再構成の精度を向上させた。更に、製造上の拘束も考慮したので、アルゴリズムによる設計結果はフィルターで忠実に実装が可能であることも示した。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi