• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Study of Gross-Zagier type formula via perfectiod spaces

Research Project

  • PDF
Project/Area Number 19K21829
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 11:Algebra, geometry, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Mieda Yoichi  東京大学, 大学院数理科学研究科, 准教授 (70526962)

Project Period (FY) 2019-06-28 – 2024-03-31
Keywordsパーフェクトイド空間 / Gross-Zagier型公式 / 志村多様体 / Rapoport-Zink空間 / 数論的交叉数
Outline of Final Research Achievements

The original goal was to study the conjecture so-called the arithmetic fundamental lemma by using the theory of perfectoid spaces. However, in the first year the conjecture had been solved by Wei Zhang, so I slightly changed the goal. I studied the Tate conjecture for the unitary Shimura varieties and a generalization of the p-adic Gross-Zagier formula due to Darmon-Rotger. I got some important ideas, but I need further research to achieve concrete results. I also investigated the relation between Fargues-Scholze's local Langlands correspondence and the usual one, and obtained some results in the case of the symplectic group Sp(6).

Free Research Field

数論

Academic Significance and Societal Importance of the Research Achievements

ユニタリ型志村多様体のTate予想に関する研究,p進Gross-Zagier公式を一般化する研究は,BSD予想の一般化であるBeilinson-Bloch-加藤予想への貢献に直接結び付くものである.本研究によって得たアイデアにより,研究を進めるべき方向性が明確になったため,近い将来に具体的な成果が得られることが期待できる.また,局所Langlands対応に関する成果は,Fargues-Scholzeの構成が正統的なものであることを保証するとともに,局所志村多様体のエタールコホモロジーの決定という,従来から興味を持たれてきた問題にも応用を持つものである.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi