2020 Fiscal Year Final Research Report
Study on the static and dynamic magnetic properties of arrayed amorphous metal magnetic particles with the submicron sizes
Project/Area Number |
19K21952
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 21:Electrical and electronic engineering and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
ENDO Yasushi 東北大学, 工学研究科, 准教授 (50335379)
|
Co-Investigator(Kenkyū-buntansha) |
宮崎 孝道 東北大学, 工学研究科, 技術専門職員 (20422090)
|
Project Period (FY) |
2019-06-28 – 2021-03-31
|
Keywords | アモルファス金属磁性微粒子 / 電源用磁心材料 / サブミクロンサイズ / 高周波磁気特性 / 鎖状粒子 |
Outline of Final Research Achievements |
In order to create magnetic core materials for the next-generation power supply, this study focuses on static and dynamic magnetic properties of amorphous soft magnetic particles with submicron sizes synthesized by chemical preparation in aqueous solutions, and reports the synthesis of these particle chains and their magnetic properties. These submicron particles possess both the good magnetic softness with the low hysteresis loss and good high-frequency magnetic properties. Also, as these particle chains are synthesized, the demagnetization field associated with isolated particle can be reduced, resulting in improvement of high permeability performance. These results demonstrate that these amorphous magnetic particles with submicron sizes are one of the candidates as magnetic core materials for next-generation power supply. These results suggest that the particle chains have a high potential for high-frequency applications such as inductor cores and electromagnetic noise absorbers.
|
Free Research Field |
高周波磁性材料・高周波磁気計測工学
|
Academic Significance and Societal Importance of the Research Achievements |
学術的な意義に関しては、粒度分布の狭いサブミクロンアモルファス軟磁性微粒子の合成に成功し、配列化することにより一方向に形状異方性が誘導されて透磁率が向上することにより、良好な高周波磁気特性を示すことを明確にしたことである。また、社会的意義に関しては、合成した微粒子が電源用デバイス次世代磁心材料の有力な候補となりうることと、それらの微粒子を鎖状・配列化することによりノイズ抑制体などの高周波磁気デバイスへの応用が期待できることである。
|