• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Digital MS imaging to visualize heterogeneity of extracellular vesicles

Research Project

  • PDF
Project/Area Number 19K22575
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 50:Oncology and related fields
Research InstitutionShizuoka Cancer Center Research Institute

Principal Investigator

Hatakeyama Keiichi  静岡県立静岡がんセンター(研究所), その他部局等, 研究員 (20564157)

Co-Investigator(Kenkyū-buntansha) 前田 義昌  東京農工大学, 工学(系)研究科(研究院), 助教 (30711155)
吉野 知子  東京農工大学, 工学(系)研究科(研究院), 教授 (30409750)
Project Period (FY) 2019-06-28 – 2024-03-31
Keywords単一細胞解析 / 分泌たんぱく質
Outline of Final Research Achievements

Extracellular vesicles, including exosomes, are of great importance in the field of cancer, but much remains unknown about the heterogeneity of extracellular vesicle contents. Therefore, the aim of this study was to establish a platform for the visualisation of molecules contained in extracellular vesicles derived from a single cancer cell.
We aimed to establish the basic technology required to capture secretory proteins from a single cell, which led to the establishment of a stable molecular immobilisation method with our collaborator, the University of Agriculture and Technology. We also took a discovery approach using bioinformatics-based analysis methods to identify molecules derived from a single cancer cell. We identified a cell population that secretes a protein with a different expression pattern independent of the cell cycle at the level of the same cell line.

Free Research Field

がんゲノム

Academic Significance and Societal Importance of the Research Achievements

本研究は細胞外小胞内容物の不均質性に注目し、同一細胞株レベルで細胞周期とは無関係に発現パターンが異なる分泌タンパク質を分泌する細胞集団を同定したことに学術的意義を有する。
またこの研究過程で構築したプラットフォームは、他の分泌たんぱく質の検出への応用も可能であり有用性が高い。さらに、バイオインフォマティクスを利用した解析手法は他研究の推進にも役に立ち、その技術は共同研究先の学生の教育にも利用されたため一定の社会的意義も有すると判断した。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi