2020 Fiscal Year Final Research Report
Development of photoelastic measurement system for visualization of unsteady hydrodynamic stress field
Project/Area Number |
19K23483
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0301:Mechanics of materials, production engineering, design engineering, fluid engineering, thermal engineering, mechanical dynamics, robotics, aerospace engineering, marine and maritime engineering, and related fields
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Muto Masakazu 東京農工大学, 工学(系)研究科(研究院), 特任助教 (30840615)
|
Project Period (FY) |
2019-08-30 – 2021-03-31
|
Keywords | 可視化技術 / 流体計測 / 圧力計測 / 偏光計測 / 血管障害 / 光弾性法 / 複屈折 / 複雑流体 |
Outline of Final Research Achievements |
The purpose of our study is to develop an unsteady and non-contact photoelasticity method to measure hydraulic stress field. Our system with high-speed polarization camera enables us to visualize phase retardation field induced by solution of chain polymers under stress loading. Measurement of steady laminar flow field of liquid polymer in a channel using our photoelasticity method reveals that the retardation is influenced by not only the rheological properties of chain polymers but also its intrinsic birefringence. Especially, the solution of cellulose nano crystal is highly sensitive towards stress loading. Since the spatial intensity distribution of the measured retardation matches that of stress field obtained by numerical analysis, our method with CaBER-DoS system can measure the stress-optical coefficient necessary for the conversion from retardation to stress. From the measured coefficient, the stress field of liquid polymer under uniaxial extension is successfully visualized.
|
Free Research Field |
流体力学
|
Academic Significance and Societal Importance of the Research Achievements |
本課題にて構築した光弾性法は非接触かつ高時空間分解能な応力場計測手法である.そのため,非定常せん断応力の調査が鍵となる脳動脈瘤の破裂メカニズム解明に向けて,脈動流速の発達時間 (80 ms程度) 内で瘤内流体応力場を低侵襲に計測でき,今後の医・工学分野発展のキーテクノロジーとなる.さらに計測した実験応力場とPIVやPTVによる実験流速場との比較により,流体応力の数理モデルの妥当性を実験検証でき,その学術的価値も非常に高い.現状の流速を既知とする「流体力学」に対して,本手法の確立により応力を既知とした研究パラダイムへ転換できれば,複雑な流動現象の抜本的な解明と予測・制御へ展開できる.
|