2011 Fiscal Year Final Research Report
4-MANIFOLDS AND RIEMANN SURFACES
Project/Area Number |
20340014
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Gakushuin University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
ASHIKAGA Tadashi 東北学院大学, 工学部, 教授 (90125203)
|
Co-Investigator(Renkei-kenkyūsha) |
KAMADA Seiichi 広島大学, 理学系研究科, 教授 (60254380)
KAWAZUMI Nariya 東京大学, 数理科学研究科, 准教授 (30214646)
ENDO Hisaaki 東京工業大学, 理工学研究科, 教授 (20323777)
YOSHIKAWA Ken-ichi 京都大学, 理学研究科, 教授 (20242810)
TAKAMURA Shigeru 京都大学, 理学研究科, 准教授 (20362436)
IWASE Zjunici 金沢大学, 自然科学研究科, 助教 (70183746)
|
Project Period (FY) |
2008 – 2011
|
Keywords | 位相幾何学 / 4次元多様体 / リーマン面 |
Research Abstract |
A Riemann surface is a closed surface carrying a complex structure. The isomorphism classes of Riemann surfaces make a complex orbifold called the moduli space. It can be compactified by adding certain "boundaries". The main achievement is that we have succeeded in constructing a "universal degenerating family of Riemann surfaces" over the compactified moduli space. A paper is now in preparation, but the result is expected to be applied in many problems of 4-manifolds which are fibered by Riemann surfaces.
|