2011 Fiscal Year Final Research Report
Combinatorics on medium-sized infinite cardinals
Project/Area Number |
20540114
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Nagoya University |
Principal Investigator |
YASUO Yoshinobu 名古屋大学, 情報科学研究科, 准教授 (90281063)
|
Co-Investigator(Renkei-kenkyūsha) |
FUCHINO Sakae 神戸大学, 大学院・システム情報学研究科, 教授 (30292098)
MATSUBARA Yo 名古屋大学, 大学院・情報科学研究科, 教授 (30242788)
MIYAMOTO Tadatoshi 南山大学, 経営学部, 教授 (70229889)
KADA Masaru 大阪府立大学, 大学院・理学系研究科, 准教授 (00312447)
TOMOYASU Kazuo 都城工業高等専門学校, 一般科目理科, 准教授 (10332107)
|
Research Collaborator |
SAKAI Hiroshi 神戸大学, 大学院・システム情報学研究科, 講師 (70468239)
USUBA Toshimichi 名古屋大学, 高等研究院, 特任助教 (10513632)
KONIG Bernhard (元)トロント大学, 客員研究員
B.LARSON Paul マイアミ大学, 教授
|
Project Period (FY) |
2008 – 2011
|
Keywords | 数学基礎論 / 公理的集合論 / 集合論的位相空間論 / 強制法 / 強制公理 / 反映原理 / 基数不変量 |
Research Abstract |
Combinatorics of infinite cardinals greater than or equal to aleph 2 take on a different aspect from that of aleph 1, that is, the least uncountable cardinal. In this research, we studied inherent combinatorial nature of relatively small infinite cardinals greater than or equal to aleph 2, from the aspect of its interaction with several well-known axioms of set theory and that of its influence on set-theoretic topology, and obtained several significant results in this area.
|
Research Products
(15 results)