• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2011 Fiscal Year Final Research Report

Estimates of knot invariants via diagrams and geometrical sence of them

Research Project

  • PDF
Project/Area Number 20740035
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

KAWAMURA Tomomi  名古屋大学, 多元数理科学研究科, 准教授 (40348462)

Project Period (FY) 2008 – 2011
Keywords位相幾何 / 結び目理論
Research Abstract

We have never found any formula to determine the minimum number of crossing changes needed to unknot any given knot. In this research, we estimate this minimum number via a diagram of the knot, more strictly than known results. Essentially, we estimate the four-genus, the Rasmussen invariant, and Ozsvath and Szabo's invariant.

  • Research Products

    (3 results)

All 2012 2010 2009

All Presentation (3 results)

  • [Presentation] 絡み目の整数値不変量のベネカン不等式の精密化2012

    • Author(s)
      川村友美
    • Organizer
      研究集会「接触構造・特異点・微分方程式およびその周辺」
    • Place of Presentation
      鹿児島大学
    • Year and Date
      2012-01-20
  • [Presentation] An estimate of the Rasmussen invariant for links2010

    • Author(s)
      Tomomi Kawamura
    • Organizer
      Knots, Contact Geometry and Floer Homology Tambara workshop
    • Place of Presentation
      東京大学玉原国際セミナーハウス
    • Year and Date
      2010-05-29
  • [Presentation] 絡み目のラスムッセン不変量のベネカン不等式に類似した評価式2009

    • Author(s)
      川村友美
    • Organizer
      日本数学会, 2009年度秋季総合分科会トポロジー分科会
    • Place of Presentation
      大阪大学
    • Year and Date
      2009-09-24

URL: 

Published: 2013-07-31  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi