• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2011 Fiscal Year Final Research Report

Mathematical analysis of an incompressible viscous fluid in an infinite layer by methods of real analysis

Research Project

  • PDF
Project/Area Number 20740083
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Basic analysis
Research InstitutionKisarazu National College of Technology

Principal Investigator

ABE Takayuki  木更津工業高等専門学校, 基礎学系, 准教授 (70396274)

Project Period (FY) 2008 – 2011
KeywordsNavier-Stokes方程式 / Stokes方程式 / レゾルベント評価 / 解析的半群 / 自由境界問題 / Besov空間 / 斉次Besov空間 / Maximal regularity
Research Abstract

We analyze a resolvent problem of the Stokes equation in an infinite layer and prove that the Stokes operator generates an analytic semigroup on Holder and Besov spaces. As an application, we prove a stability of some special solutions in Besov spaces. Moreover, we prove maximal regularity for the Stokes equation by operator-valued Fourier multiplier theorem, and we prove unique existence of a local in time solution to free boundary problems of the Navier-Stokes equation.

  • Research Products

    (1 results)

All 2010

All Journal Article (1 results) (of which Peer Reviewed: 1 results)

  • [Journal Article] On a stationary problem of the Stokes equation in an infinite layer in Sobolev and Besov spaces2010

    • Author(s)
      阿部孝之、山崎昌男
    • Journal Title

      Journal of Mathematical Fluid Mechanics

      Volume: 12巻 Pages: 61-100

    • DOI

      DOI:10.1007/s00021-008-0276-z

    • Peer Reviewed

URL: 

Published: 2013-07-31  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi