• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

探索的分析によるデータ駆動型仮説の信頼性評価法の確立と生命科学分野における実証

Research Project

Project/Area Number 20H00601
Research InstitutionNagoya University

Principal Investigator

竹内 一郎  名古屋大学, 工学研究科, 教授 (40335146)

Co-Investigator(Kenkyū-buntansha) 花田 博幸  国立研究開発法人理化学研究所, 革新知能統合研究センター, 特別研究員 (00793035)
寺田 吉壱  大阪大学, 大学院基礎工学研究科, 准教授 (10738793)
稲津 佑  名古屋工業大学, 工学(系)研究科(研究院), 助教 (20869896)
本谷 秀堅  名古屋工業大学, 工学(系)研究科(研究院), 教授 (60282688)
津田 宏治  東京大学, 大学院新領域創成科学研究科, 教授 (90357517)
Project Period (FY) 2020-04-01 – 2025-03-31
Keywords機械学習 / 統計科学 / 人工知能 / 選択的推論 / 生命科学
Outline of Annual Research Achievements

機械学習などのデータ分析技術を利用する科学研究のアプローチはデータ駆動型科学と呼ばれさまざまな分野で有望視されている.データ駆動型科学では研究対象に関するデータを分析することによって科学的仮説を生成するため,従来のアプローチでは思いつかないような仮説を生み出せる可能性がある. 一方,複雑なデータを複雑なアルゴリズムで分析して得られた仮説の信頼性を評価するのは難しい.特に,教師なし学習と呼ばれる探索的なデータ分析によって仮説が生成される場合,信頼性を保証する方法は確立されていない.特に,生命医療分野など,誤った判断のもたらすリスクが大きい状況ではデータ駆動型仮説の信頼性を確保することが不可欠である.本研究では,探索的データ分析によって得られたデータ駆動型仮説の信頼性を定量化する数理・情報基盤を構築し,その有用性を生命医療分野において実証する.教師なし学習アルゴリズムが強力であればあるほど(データへの適合力が大きければ大きいほど),有望な仮説が生成できる可能性が高まる一方,仮説選択バイアスも大きくなってしまう.データ駆動型仮説の信頼性保証は,仮説選択バイアスを正しく定量化し,その補正を行うことによって実現できる.本研究では仮説選択バイアスを適切に補正し,アルゴリズムが仮説を生成したという条件のもとで統計的推論(仮説検定の枠組による偽陽性率(p値)や信頼区間の計算)を行う方法を確立する.2022年度は,深層学習の説明手法として様々な分野で利用されているSaliencyMapに対する統計的信頼性の定量化を行う方法を開発した.特に,医療画像分野へ応用について検討し,脳画像分析において有用であることを実証した.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

2022年度は,方法面では,前年度に引き続き,深層学習によって駆動される知識の信頼性評価法を選択的推論の枠組で発展させた.これまでは,特定の深層学習モデルごとに選択イベントを導出し,これを実装する必要があったが,今年度の研究により,深層学習の各モジュールに選択イベントを計算する機能を導入することで,特定の条件を満たす畳み込みニューラルネットワーク(Convolutional Neural Network)であれば,選択イベントを自動的に計算できる枠組を構築した.これにより,大規模な深層学習モデルに対しても選択的推論が可能となるとともに,任意の層の内部表現に基づいて得られた仮説を取り扱うことが可能となった.これにより,深層学習の説明手法として有用なsaliency mapの信頼性評価が実現できた.本研究の成果は機械学習や関連分野の最難関国際会議であるNeurIPSなどに採択され,国内外から注目を集めている.

Strategy for Future Research Activity

2023年度以降も,選択的推論を基軸とし,方法面の発展と適用先の開拓を並列して実施する予定である.特に、Transformerなど,畳み込みニューラルネットワーク以外の深層学習モデルの選択的推論の適用範囲を拡げること、計算時間を削減することに取り組む。また、新たな問題設定として、不均一なデータにおける異常検知のにおける信頼性保障のために選択的推論を活用する方策を検討する。

  • Research Products

    (5 results)

All 2022

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (2 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Root-finding Approaches for Computing Conformal Prediction Set.2022

    • Author(s)
      Ndiaye E., Takeuchi I.
    • Journal Title

      Machine Learning

      Volume: - Pages: -

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] More Powerful Conditional Selective Inference for Generalized Lasso by Parametric Programming.2022

    • Author(s)
      Duy V.N.L., Takeuchi I.
    • Journal Title

      Journal of Machine Learning Research

      Volume: - Pages: -

    • Peer Reviewed / Open Access
  • [Journal Article] Conditional Selective Inference for Robust Regression and Outlier Detection using Piecewise-Linear Homotopy Continuation.2022

    • Author(s)
      Tsukurimichi T., Inatsu Y., Duy V.N.L., Takeuchi I.
    • Journal Title

      Annals of Institute of Statistical Mathematics

      Volume: - Pages: -

    • Peer Reviewed / Open Access
  • [Presentation] Quantifying Statistical Significance of Neural Network-based Image Segmentation by Selective Inference.2022

    • Author(s)
      Duy V.N.L., Iwazaki S., Takeuchi I.
    • Organizer
      Neural Information Processing Systems (NeurIPS)
    • Int'l Joint Research
  • [Presentation] Bayesian Optimization for Distributionally Robust Chance-constrained Problem.2022

    • Author(s)
      Inatsu Y., Takeno S., Karasuyama M., Takeuchi I.
    • Organizer
      International Conference on Machine Learning (ICML)
    • Int'l Joint Research

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi