• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Superconductivity parity and magnetic frustration near quantum critical point of chiral symmetry structure

Research Project

  • PDF
Project/Area Number 20H01848
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 13030:Magnetism, superconductivity and strongly correlated systems-related
Research InstitutionIbaraki University

Principal Investigator

Kazuaki Iwasa  茨城大学, 基礎自然科学野, 教授 (00275009)

Co-Investigator(Kenkyū-buntansha) 桑原 慶太郎  茨城大学, 理工学研究科(理学野), 教授 (90315747)
Project Period (FY) 2020-04-01 – 2024-03-31
Keywordsカイラル対称 / 超伝導パリティ / 量子スピン液体 / 磁気フラストレーション / 量子ビーム
Outline of Final Research Achievements

We investigated topological electron phenomena of magnetic ordered states and superconductivity associated with phase transitions to chiral or noncentrosymmetric crystal structures. Followings were results for a typical materials system of so-called Remeika phase compound series Ln3Tr4X13(Ln = rare earth elements、T = transition metals、X = Sn, Ge). (1) The Weyl-Kondo semimetal state protected by the chiral structure symmetry was revealed for the Ln = Ce compound. (2) We revealed antiferromagnetic ordered structures affected by magnetic frustration associated with the one-dimensional magnetic chains aligned on a screw-type lattice with the chiral symmetry of the Ln = magnetic element systems. (3) We revealed quantum structural critical points of the chiral crystal structure of the Ln = La system and the structural symmetry of Ln = Y systems, which are expected to correlate with superconductivity.

Free Research Field

固体物理

Academic Significance and Societal Importance of the Research Achievements

現代のIT社会を支える電子デバイスにつながる有益な物性現象はしばしば、結晶構造や磁気秩序の相転移において見出される。近年、反転対称性の破れた結晶構造をとる物質において、その幾何学的特徴(トポロジー)に保護される新奇な電子状態が注目されている。例えば、電気伝導を担う電子があたかも光のような質量のない粒子のように振る舞うことが期待される。さらに、このトポロジカル電子がもたらす超伝導や磁気秩序構造には、これまでとは異なる性質が潜んでいる。本研究ではRemeika相化合物群を対象として、相転移によって自発的に現れる反転対称性のない結晶構造と磁気秩序の詳細を決定した成果によって物質科学の発展に寄与した。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi