2022 Fiscal Year Final Research Report
Robust Multi-Molecular Recognition through Nano-Spatiotemporal Thermal Control of Integrated Oxide Sensors
Project/Area Number |
20H02208
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21060:Electron device and electronic equipment-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Takahashi Tsunaki 東京大学, 大学院工学系研究科(工学部), 准教授 (60724838)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 分子センサ / 集積化デバイス / 金属酸化物ナノ薄膜 / ジュール自己加熱 |
Outline of Final Research Achievements |
In this study, we aimed to electrically identify diverse molecular species using integrated sensor devices, enabled by thermal control technology for nano-electronic devices, from sensors made from identical materials and structures. Specifically, we focused on (1) integrating over 1000 oxide molecular sensor devices on a single chip and their molecular detection operation, and (2) identifying molecules through nano-thermal control of integrated oxide molecular sensor devices. As a result, we achieved one-chip integration and reliable operation of 1024 oxide sensor devices through the use of lateral channel structures. Moreover, by employing spatiotemporal thermal control technology, we measured a solution mimicking human urine, successfully demonstrating the principle of biogas identification.
|
Free Research Field |
集積化分子センサ
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で実証したナノ薄膜酸化物横型チャネル構造とクロスバー電極を基盤とした集積化分子センサは分子センサの高密度集積化と高信頼化を両立する技術である.これらはいずれもIoT機器による化学情報の活用に不可欠な要素技術であり,社会的意義はきわめて大きい.また,ジュール自己加熱による熱制御に基づく集積化センサは作製や信頼性の観点で従来の材料の制限を超えて分子認識技術であることから,これまで分子群計測が難しかった系の評価につながる可能性があり,社会的意義に加えて幅広い学術分野への波及効果が非常に大きい.
|