• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Sensing and Actuation for Accelerating Knowledge I/O by Humans

Research Project

  • PDF
Project/Area Number 20H04213
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionOsaka Metropolitan University (2022)
Osaka Prefecture University (2020-2021)

Principal Investigator

Kise Koichi  大阪公立大学, 大学院情報学研究科, 教授 (80224939)

Co-Investigator(Kenkyū-buntansha) 石丸 翔也  大阪公立大学, 研究推進機構, 客員研究員 (10788730)
岩田 基  大阪公立大学, 大学院情報学研究科, 准教授 (70316008)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywords知能増強 / Learning Augmentation / Eye tracking / EOG / Accelometer / self-supervised learning / contrastive learning / vocabulometer
Outline of Final Research Achievements

In this study, we focused on Learning Augmentation as a field of human-centered AI, and developed a system and evaluated experiments to realize it. The results of this study are (1) a proposal for a new vocabulary learning method called Vocabulometer, (2) a proposal for a nudge strategy to facilitate learning using Wordometer, which we have already developed, (3) a proposal for a method to facilitate learning by estimating the learner's confidence using eye trackers and arm movements (4) a deep learning method called Self-Supervised Learning that can accurately estimate reading behavior recognition and confidence even when labeled data is scarce.

Free Research Field

知能増強、ヒューマンセンシング

Academic Significance and Societal Importance of the Research Achievements

本研究では、人間の学習をAIが助けるという枠組にのっとって、より人間が使いやすく,学習が容易であり,かつ離脱しにくいシステムを目指して研究を行ってきた.研究成果の学術的意義については,以下が挙げられる.(1) In-the-wildの環境で動作するツール群を構築し,有効性を検証した.(2)時系列データに対するself-supervised learningとその関連手法を提案した.一方で社会的意義としては,以下が挙げられる.(1) 作成した学習システムが,実際に学習者のパフォーマンスを改善することを示した.(2) 学習のモチベーションの維持,向上に有効となるナッジ戦略を4種類提案した.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi