• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of Bayesian modeling approach to understand multicellular dynamics

Research Project

  • PDF
Project/Area Number 20H04281
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 62010:Life, health and medical informatics-related
Research InstitutionNagoya University

Principal Investigator

Shimamura Teppei  名古屋大学, 医学系研究科, 教授 (00623943)

Co-Investigator(Kenkyū-buntansha) 阿部 興  神戸薬科大学, 薬学部, 講師 (70832533)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywordsベイズモデル / 一細胞解析 / 細胞間コミュニケーション / 細胞運命決定 / 深層生成モデル / マルチオミクス / 因子分解 / 細胞ダイナミクス
Outline of Final Research Achievements

In this research project, we target the cancer-immune complex system and develop a cutting-edge single-cell analysis platform, leveraging advanced mathematical modeling and artificial intelligence (AI), to elucidate the mechanisms by which tumor diversity induces treatment resistance at the single-cell level. Specifically, we (1) developed Bayesian modeling techniques to estimate causal effects between cellular populations, (2) created statistical modeling techniques to describe the dynamics of the complex system leading to treatment resistance, and (3) advanced deep learning techniques for exploring molecular regulatory mechanisms within cellular populations.

Free Research Field

システム生物学

Academic Significance and Societal Importance of the Research Achievements

本研究課題では、革新的な一細胞オミクス計測技術によるデータ取得、最先端の数理モデリング・人工知能技術の開発、ヒト臨床検体およびモデル動物によるモデルの概念実証に関する一連の研究を、確固たる研究連携基盤の上で実施した。本研究で開発した解析手法により、がんの複雑系の解明、さらにはがんの診断、治療、治療効果予測などの臨床応用に向けた強力な研究開発基盤が構築されることが期待される。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi