• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24

Research Project

  • PDF
Project/Area Number 20K03505
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionFukuoka University (2023)
Tohoku University (2020-2022)

Principal Investigator

Shimakura Hiroki  福岡大学, 理学部, 教授 (90399791)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords代数学 / 頂点作用素代数 / 正則頂点作用素代数 / 自己同型群 / リーチ格子
Outline of Final Research Achievements

The classification of holomorphic vertex operator algebras of central charge 24 are done by case-by-case analysis except for the characterization of the moonshine vertex operator algebra. Hence a uniform proof for the classification is expected.
In this research project, we give a uniform construction and classificaiton of holomorphic vertex operator algebras of central charge 24 except for the characterization of the moonshine vertex operator algebra. As an application, we determine their automorphism groups. In order to do so, we forcus on some sublattices of the Leech lattice and determine the automorphism groups of the orbifolds of the associated lattice vertex operator algebras.

Free Research Field

頂点作用素代数

Academic Significance and Societal Importance of the Research Achievements

中心電荷24の正則頂点作用素代数の分類問題は、数理物理学における2次元共形場理論のある種の分類問題に対応しており、作用素環論などの他の数学分野でも注目されている問題であった。したがって、この問題への新しい解決法が与える影響は大きい。本研究成果はすでにいくつかの数理物理学等の研究で応用されている。また、自己同型群の群構造や正則頂点作用素代数の記述を通じて、有限群論や組合せ論への繋がりも見つかった。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi