• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Commutative Ring Theory via Resolution of Singularities

Research Project

  • PDF
Project/Area Number 20K03522
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionMeiji University

Principal Investigator

Watanabe Kei-ichi  明治大学, 研究・知財戦略機構(生田), 研究推進員(客員研究員) (10087083)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywords正規特異点 / 特異点解消 / 整閉イデアル / 還元数 / Gorenstein 環 / Hilbert-Kunz 重複度 / 楕円型特異点 / 数値半群
Outline of Final Research Achievements

I studied with Tomohiro Okuma (Yamagat Univ.) and Ken-ichi Yoshida (Nihon Univ.) integrally closed ideals in a 2-dimensional normal singularities. After our previous work on pg-ideals, we proposed a new class of ideals called "elliptic ideals" and showed nice properties of such ideals. This notion came up during the joint work with Okuma, Yoshida and M.-E. Rossi (Genova Univ.). This notion is useful to characterize "elliptic singularities". We also found a new example where the 2 notions of "normal reduction numbers" are different.

In theory of positive characteristics, I found a new lower bound of Hilbert-Kunz multiplicities (joint work with Yoshida, I. Smirnov et. al) and

Free Research Field

可換環論,代数幾何学,特異点論

Academic Significance and Societal Importance of the Research Achievements

可換環論は代数幾何学と深く結びついている,可換環論の最も重要な対象であるイデアルに対して,その環論的性質を幾何学的に解析する事は今まで行われて来なかった.本研究は,2次元の正規特異点に対して幾何学的な情報を用いて,環論的性質を導くもので,大変独自性が高い.実際,今まで知られていなかった,正規還元数を持つイデアルを幾何学的情報によって発見でき,またその代数的な表現を与えた事は大変大きな成果であった.
また,正標数の可換環論の手法を用いて,幾何学的な性質を与える事は将来幾何学的な情報をコンピューターで計算を可能にするために役に立つ可能性を持っている.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi