2023 Fiscal Year Final Research Report
Stationary structure, self-similarity, and the behavior of solutions in nonlinear parabolic partial differential equations
Project/Area Number |
20K03685
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | Hiroshima University |
Principal Investigator |
Naito Yuki 広島大学, 先進理工系科学研究科(理), 教授 (10231458)
|
Co-Investigator(Kenkyū-buntansha) |
橋詰 雅斗 大阪大学, 大学院基礎工学研究科, 助教 (20836712)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 非線形解析 / 非線型楕円型偏微分方程式 / 特異解 / 優 Sobolev 臨界 / 走化性方程式系 / 自己相似解 |
Outline of Final Research Achievements |
We consider positive radial singuar solutions of semilinear elliptic equations with general supercitical growthes. We establish the existence and exact asymptotic expansions of the singular solutions as well as its uniqueness in the space of radial functions. We can apply these results to a wide class of nonlinearities in a unified way. We study the simplest parabolic-elliptic model of chemotaxis in the spaces with higher diminsions. We show the optimal conditions on the initial data for the finite time blow-up and the global existence of solutions in terms of stationary solutons.
|
Free Research Field |
数物系科学
|
Academic Significance and Societal Importance of the Research Achievements |
広いクラスの非線形楕円型偏微分方程式に対して、特異解の定性的性質を明らかにすることができた。 走化性方程式系において,空間10次元以上の場合は、Morrey 空間におけるノルム評価を用いた条件が最適であることを示すことができ,一方、空間3次元以上9次元以下では、既存の評価が最適ではなく改善の余地があることを示すことができた。
|