2022 Fiscal Year Final Research Report
Innovative mitigation technology of hydrogen sulfide in sewer pipe by combination of electricity producing bacteria and conductive concrete
Project/Area Number |
20K04749
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 22060:Environmental systems for civil engineering-related
|
Research Institution | Yamaguchi University |
Principal Investigator |
IMAI TSUYOSHI 山口大学, 大学院創成科学研究科, 教授 (20263791)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 発電菌 / 導電性コンクリート / 硫化水素 / 下水管 / 下水道の長寿命化 / 導電性材料 / メタゲノム解析 / Geobacter sp. |
Outline of Final Research Achievements |
The objective of this study was to develop a new technology to mitigate the concentration of hydrogen sulfide in sewer pipe by controlling electricity-producing bacteria (EPB) with using conductive concrete. Experimental results showed that the concentration of hydrogen sulfide significantly decreased by controlling EPB with using conductive concrete. Also found was that elemental sulfur was observed after experiment in sludge for conductive concrete, whereas this phenomenon was not observed for ordinary Portland cement. These results demonstrated that conductive concrete provides an electron pathway from deposited sludge in the bottom of sewer pipe to oxygen dissolved in surface water and as a result, the electron generated from hydrogen sulfide oxidation in anaerobic environment was accepted by oxygen via conductive concrete. Experimental results also showed that EPB could decrease the concentration of hydrogen sulfide, meaning hydrogen sulfide was biologically oxidized by EPB.
|
Free Research Field |
衛生工学、環境工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果として嫌気的な下水管の底層部にありながら水面近傍に存在する酸素を電子受容体として底層部の硫化水素を酸化・抑制できる発電菌による硫化水素の酸化メカニズムを解明し,また分子生物学的手法によりこの発電菌の主なものがGeobacter sp.であることを明らかにした本研究の学術的な意義は大きい. 現在管路施設の維持管理を行う上で大きな問題となっているのが下水管内で発生する硫化水素に起因する下水管の腐食である.本研究の成果により更新コストと維持管理コストを抑え、かつ硫化水素に対して高耐久かつ強靭性のある下水道施設が実現でき,もって持続可能な社会の実現に寄与できることが本研究の社会的意義である.
|