• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development, validation and application of machine learning system for TCR epitope prediction

Research Project

  • PDF
Project/Area Number 20K06610
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 43060:System genome science-related
Research InstitutionShiga University (2021-2022)
Osaka University (2020)

Principal Investigator

Teraguchi Shunsuke  滋賀大学, データサイエンス学系, 准教授 (00467276)

Co-Investigator(Kenkyū-buntansha) 榊原 修平  大阪大学, 免疫学フロンティア研究センター, 特任助教 (10618838)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywordsエピトープ予測 / 機械学習 / 免疫レパトア / 1細胞遺伝子発現解析 / SARS-CoV-2
Outline of Final Research Achievements

The immune system is equipped with a vast array of molecular sensors, called immune repertoire, to individually respond to various pathogens. However, predicting the specific sensor that recognizes a particular pathogen (antigen epitope) remains challenging. In this research, we utilized state-of-the-art experimental techniques to collect empirical data on the associations between molecular sensors and pathogens, and developed a machine learning-based epitope prediction system for these molecular sensors. In addition, we collaborated with external experts to conduct experimental research investigating how the variations in clinical symptoms caused by specific pathogens relate to the immune repertoire at the cellular level.

Free Research Field

バイオインフォマティクス

Academic Significance and Societal Importance of the Research Achievements

免疫レパトアの各センサーと対応する病原体の対応が正確に予測できるようになると、将来的に血液中の免疫細胞が持つ情報から、その個人の現在の病原体に関する罹患情報はもちろん、これまでの病気の来歴や、将来的な病気への対応力など様々な情報を得ることができると考えられ、直接的な臨床応用の可能性が考えられる。また、学術的にも、同じ実験データから遥かに多くの知見を得ることができると期待される。本研究で取得したデータや予測システムはそのような将来的な応用の基礎となるものである。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi