2022 Fiscal Year Final Research Report
Ultra-High-Resolution CT: Prediction of Therapeutic Induced Complication with Radiomics Appropach
Project/Area Number |
20K08037
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Fujita Health University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
近藤 征史 藤田医科大学, 医学部, 教授 (00378077)
村山 和宏 藤田医科大学, 医学部, 准教授 (40622931)
今泉 和良 藤田医科大学, 医学部, 教授 (50362257)
林 真也 藤田医科大学, 医学部, 教授 (60313904)
服部 秀計 藤田医科大学, 医学部, 講師 (70351046)
外山 宏 藤田医科大学, 医学部, 教授 (90247643)
星川 康 藤田医科大学, 医学部, 教授 (90333814)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 放射線医学 / CT / 人工知能 |
Outline of Final Research Achievements |
In this study, we assessed the influence of reconstruction algorithms including currently available iterative reconstruction techniques as well as deep learning techniques on CT value evaluation and image quality improvements, which were determined as signal-to-noise ratio (SNR) or contrast-to-noise ratio (CNR) on ultra-high-resolution CT (UHR-CT). Then, machine-learning-based artificial intelligence (AI) was also developed to assess lung textures for evaluation of various lung diseases including complication or side effects due to therapy. Moreover, radiomics approach was performed to assessed the primary lesion. According to the above-mentioned data, new AI algorithm was started to be developed and tested for prediction of therapeutic outcome or complications based on conservative therapy in non-small cell lung cancer patients.
|
Free Research Field |
放射線医学
|
Academic Significance and Societal Importance of the Research Achievements |
近年,臨床応用された超高精細CT(Ultra-High-Resolution CT: 以下UHR-CT)は慢性閉塞性肺疾患や間質性肺炎の定量評価においては再構成法や撮像法などに関して様々な影響を受けるとともに、人工知能を用いた定量的評価法やRadiomics解析法の確立が求められている。本研究では世界に先駆けてMachine learningの手法を用いた人工知能を開発し、非小細胞肺癌の保存的治療の予後改善を目的とするため、学問的および社会的意義が高いと考えられる。
|