• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Impact of dose uncertainty of tracking irradiation in three-dimensional measurements using a polymer-gel dosimetry with deep learning

Research Project

  • PDF
Project/Area Number 20K08097
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionNational Cancer Center Japan

Principal Investigator

Hidenobu Tachibana  国立研究開発法人国立がん研究センター, 東病院, 室長 (20450215)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywordsゲル線量計 / 深層学習 / 放射線治療 / MR
Outline of Final Research Achievements

The principles and implementation of deep learning for high resolution and noise reduction (DL-HRNR) have been completed, but it has been discovered that obtaining high-quality data is difficult and challenging. In the future, it is believed that obtaining training data for DL-HRNR can be achieved through high-speed sequences and low-noise sequences in MR imaging. Additionally, conducting MR imaging of gel dosimeters with various dose distribution patterns will be necessary to obtain a larger amount of training data.

Free Research Field

放射線治療医学物理学

Academic Significance and Societal Importance of the Research Achievements

深層学習が全てを解決できるわけではなく、よい教師データが必要であり、本研究におけるゲル線量計の教師データ取得が難しいことがわかった。
MRによるゲル線量計の画像化は歴史が古く、実績が多いため、デファクトスタンタードであり、信頼性も高いが、利便性の観点からすると、別のモダリティへのシフトが必要であると言える。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi