2023 Fiscal Year Final Research Report
Development of deep learning methodology in RNA-seq analysis and application to sarcoma treatment
Project/Area Number |
20K09453
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 56020:Orthopedics-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
篠田 裕介 埼玉医科大学, 医学部, 教授 (80456110)
谷口 優樹 東京大学, 医学部附属病院, 講師 (80722165)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 骨軟部腫瘍 / 未分化多形肉腫 / 深層学習 |
Outline of Final Research Achievements |
Sarcoma is a malignant tumor that originates from mesenchymal cells such as muscle and fat, it can be difficult to diagnose because it is rare and consists of about 70 histological types. Undifferentiated pleomorphic sarcoma (UPS) is the most common sarcoma that occurs in soft tissue, and is diagnosed after excluding other ``tumors with a clear differentiation direction or specific fusion genes''. This study aimed to reclassify, stratify, and elucidate the pathology of UPS using deep learning analyzing gene expression of UPS. At present, we have not identified any characteristics that can distinguish it from other sarcomas, but we will further investigate clinical information and stratify UPS to identify abnormalities that may lead to clinical applications and new treatments.
|
Free Research Field |
骨軟部腫瘍
|
Academic Significance and Societal Importance of the Research Achievements |
未分化多形肉腫は肉腫の中でも高頻度に発生する高悪性度の肉腫である。未分化多形肉腫といっても臨床的には治療への反応、予後が異なるものが含まれていると考えられる。そのため、遺伝子発現データを深層学習を用いて未分化多形肉腫を再分類し、適切な治療方針、新規治療法の開発を目指した新規性のある研究である。本研究によって、臨床情報の特徴を抽出する未分化多形肉腫の層別化には完全には至らなかったが、引き続きデータを集積して臨床応用、新規治療開発に繋げえられるようにさらなる解析を行なっていく予定である。
|