2023 Fiscal Year Final Research Report
Activation of dental pulp stem cells by neurotransmission signals and intentional blood flow regulation in traumatic teeth
Project/Area Number |
20K10224
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 57070:Developmental dentistry-related
|
Research Institution | Niigata University |
Principal Investigator |
OHSHIMA KUNIKO 新潟大学, 医歯学総合病院, 講師 (80213693)
|
Co-Investigator(Kenkyū-buntansha) |
大島 勇人 新潟大学, 医歯学系, 教授 (70251824)
早崎 治明 新潟大学, 医歯学系, 教授 (60238095)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 歯髄幹細胞 / 歯髄再生 / 再植 / アドレナリン受容体作動薬 / GFP |
Outline of Final Research Achievements |
Avulsion is frequent in pediatric dental trauma, and pulp regeneration isn't expected in mature teeth after tooth replantation. In this study, we developed a new technique to induce pulp regeneration after replantation by intentionally perforating the floor of the pulp chamber. Maxillary first molars of three-week-old mice were extracted, and the floor of the pulp chamber was perforated with a carbide bur before replantation. The results suggest that early establishment of revascularization via the perforation reduced the number of apoptotic cells in the pulp chamber, and that significantly more quiescent stem cells survived in the pulp tissue to actively proliferate. The positive rate of Nestin was significantly increased and the formation of third dentin in the crown was also increased. Thus, the results suggest that intentional perforation of the pulp floor promotes pulpal healing by early restoration of blood circulation and activation of pulpal quiescent stem cells.
|
Free Research Field |
小児歯科学
|
Academic Significance and Societal Importance of the Research Achievements |
小児は頭部が相対的に大きく,転倒に対する防御能力が低いため,前歯部外傷の頻度が高いが,骨の柔軟性が高いため,成人に多い歯根破折より完全脱臼の割合が高い.完全脱臼の新鮮例には再植が推奨され,根未完成歯では再植後,歯髄再生が期待できるが,歯根完成歯では歯髄再生は期待できない。また、歯の再植後に歯根吸収やアンキローシスを惹起させないためにも、歯髄内に早期に象牙質形成を誘導することが重要であることから、本研究は、小児の歯の完全脱臼後の再植を成功に導く新規治療法へと発展する可能性が高く、人為的に細胞・基質間相互作用を調節することにより歯髄再生を促す歯髄再生療法の基盤構築にも繋がることが期待される。
|