2022 Fiscal Year Final Research Report
A predictive model of unprofessional behavior in medical students using machine learning
Project/Area Number |
20K10396
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 58010:Medical management and medical sociology-related
|
Research Institution | Chiba University |
Principal Investigator |
Shikino Kiyoshi 千葉大学, 大学院医学研究院, 特任准教授 (10624009)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | プロフェッショナリズム / 機械学習 / 人工知能 / AI / 予測モデル / アンプロフェッショナル |
Outline of Final Research Achievements |
This project uses machine learning to obtain and validate predictive models of unprofessional behavior among medical students, and to analyze the causes of unprofessional behavior. Early prediction of students at high risk for unprofessional behavior and analysis of the factors will enable highly feasible educational support that takes educational resources into account. Due to the outbreak of the new coronavirus infection, it has been difficult to establish a research system and collect data as in the past, and progress has been limited to determining known data items to be used in the learning phase of the opportunity study. A model is currently being developed based on the data items.
|
Free Research Field |
医学教育
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、機械学習を用いて医学生におけるアンプロフェッショナリズムな行動に関する予測モデルの獲得と妥当性の検証、ならびにその要因分析を行うもの である。アンプロフェッショナルな行動を起こすリスクが高い学生を早期に予測し、かつその要因を分析できれば、教育資源を考慮した実行可能性の高い教育支 援が可能となる。さらには、アンプロフェッショナルな行動を防ぐことが可能になり、全国の医学部で展開することで、質を担保した医師育成に貢献すること ができる。
|