• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Optimization of always-on systems by combinatorial reconfigurations

Research Project

  • PDF
Project/Area Number 20K11666
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionTohoku University

Principal Investigator

SUZUKI Akira  東北大学, 情報科学研究科, 准教授 (10723562)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords組合せ遷移 / 最適化遷移
Outline of Final Research Achievements

The theoretical results were obtained from the optimized reconfiguration problem for the independent set and the coloring problem, and results were obtained in terms of both intractability and tractability. Specifically, we conducted complexity analysis using parameters such as the degeneracy and solution size, and we analyzed the intractability based on graph classes. In the latter case, we clarified the boundary of the complexity from the viewpoints of the number of colors and degeneracy. These studies have been recognized as academic achievements, as evidenced by their acceptance in peer-reviewed journals.
On the application side, we have implemented and released a combinatorial reconfiguration solver in collaboration with other researchers and research projects. Additionally, we presented the algorithms operating within the implemented and released programs in oral presentations.

Free Research Field

計算機科学

Academic Significance and Societal Importance of the Research Achievements

遷移問題は,現在の解から目的の解まで到達可能かどうかを判定し,その方法を見つける問題である.近年国内外で盛んに研究が進められており,様々な遷移問題を効率よく解く様々なテクニックが考案されてきたが,いざ実社会に応用しようと利用者の視点に立ってみると,「利用者が目的の解を事前に知っている必要がある」「遷移問題によって到達不可能と判定されることがある」という問題が生じる.本研究はこれらを解決することで,組合せ遷移の利便性向上に向け様々な貢献をすることを目指すものである.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi