• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Organizing Videos by Human-in-the-Loop Machine Learning for for Skill Transfer and Know-How Sharing

Research Project

  • PDF
Project/Area Number 20K12115
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 62030:Learning support system-related
Research InstitutionTokyo University of Science

Principal Investigator

Taniguchi Yukinobu  東京理科大学, 工学部情報工学科, 教授 (70759422)

Co-Investigator(Kenkyū-buntansha) 古田 諒佑  東京大学, 生産技術研究所, 助教 (20843535)
Project Period (FY) 2020-04-01 – 2023-03-31
Keywords人間参加型機械学習 / Human-in-the-loop / 弱教師あり学習 / 技能伝承 / 画像認識
Outline of Final Research Achievements

This research aims to promote skill transfer and know-how sharing by automatically organizing unedited work videos --- dividing them into semantic scenes and tagging them --- using image recognition. To reduce the annotation burden associated with the development of image recognition models, we investigated the following two approaches: (1) weakly supervised and transfer learning approach, which trains image recognition models by taking advantage of the small amount of incomplete annotation data provided by the user, and (2) a human-in-the-loop machine learning approach, which improves image recognition models by presenting the image recognition results to the user and obtaining the user feedback.

Free Research Field

知覚情報処理

Academic Significance and Societal Importance of the Research Achievements

製造業・看護など様々な業界において,熟練者から初心者への技能伝承,組織内でのノウハウ共有が重要な課題となっている.技能伝承・ノウハウは,企業やコミュニティに閉じたドメイン固有の概念を扱うため,学習データの整備,汎用的な画像認識モデルの構築が難しいことが問題となっている.本研究成果は,この問題点の解決に向けたもので,技能伝承・ノウハウ共有の促進に資するものである.なお,ここで開発した手法は,学習データ整備の困難を軽減するもので,当初想定した分野以外への展開も可能であることを示した.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi