2022 Fiscal Year Final Research Report
Organizing Videos by Human-in-the-Loop Machine Learning for for Skill Transfer and Know-How Sharing
Project/Area Number |
20K12115
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 62030:Learning support system-related
|
Research Institution | Tokyo University of Science |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
古田 諒佑 東京大学, 生産技術研究所, 助教 (20843535)
|
Project Period (FY) |
2020-04-01 – 2023-03-31
|
Keywords | 人間参加型機械学習 / Human-in-the-loop / 弱教師あり学習 / 技能伝承 / 画像認識 |
Outline of Final Research Achievements |
This research aims to promote skill transfer and know-how sharing by automatically organizing unedited work videos --- dividing them into semantic scenes and tagging them --- using image recognition. To reduce the annotation burden associated with the development of image recognition models, we investigated the following two approaches: (1) weakly supervised and transfer learning approach, which trains image recognition models by taking advantage of the small amount of incomplete annotation data provided by the user, and (2) a human-in-the-loop machine learning approach, which improves image recognition models by presenting the image recognition results to the user and obtaining the user feedback.
|
Free Research Field |
知覚情報処理
|
Academic Significance and Societal Importance of the Research Achievements |
製造業・看護など様々な業界において,熟練者から初心者への技能伝承,組織内でのノウハウ共有が重要な課題となっている.技能伝承・ノウハウは,企業やコミュニティに閉じたドメイン固有の概念を扱うため,学習データの整備,汎用的な画像認識モデルの構築が難しいことが問題となっている.本研究成果は,この問題点の解決に向けたもので,技能伝承・ノウハウ共有の促進に資するものである.なお,ここで開発した手法は,学習データ整備の困難を軽減するもので,当初想定した分野以外への展開も可能であることを示した.
|