• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Experimental study of MRI phantom focused on the cerebrospinal fluid flow

Research Project

  • PDF
Project/Area Number 20K12636
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90110:Biomedical engineering-related
Research InstitutionTsuyama National College of Technology

Principal Investigator

Hosotani Kazunori  津山工業高等専門学校, 総合理工学科, 教授 (60509107)

Co-Investigator(Kenkyū-buntansha) 竹内 一裕  独立行政法人国立病院機構岡山医療センター(臨床研究部), 独立行政法人国立病院機構 岡山医療センター(臨床研究部), 整形外科医長 (30304306)
小野 敦  川崎医療福祉大学, 医療技術学部, 教授 (20804743)
Project Period (FY) 2020-04-01 – 2024-03-31
KeywordsMRI / 脳脊髄液 / 流れの可視化 / 数値シミュレーション / 機械学習
Outline of Final Research Achievements

In this study, a flow phantom with a double-cylinder structure was developed to simulate the flow of cerebrospinal fluid (CSF) through the spinal canal, and flow characteristics were investigated using time-resolved imaging MRI.
Observation of the flow in the phantom using time-resolved SLIP-MRI confirmed that the dynamic image was similar to that of human CSF flow, even though the dynamic image was slightly blurred. When MRI imaging was performed with a stenosis in the midstream of a phantom simulating spinal cord disease, the movement of the obstructed water mass was clearly observed. Thus, a phantom simulating the affected area may be useful in understanding the disease. In this study, we further confirmed that machine learning can be used to perform binary classification of flow direction and flow path from MRI images.

Free Research Field

流体工学

Academic Significance and Societal Importance of the Research Achievements

近年,MRIにより脳脊髄液(CSF)の流動観察が可能となり,疾患の検査所見にかかる重要な情報となっているが,撮像画像から変動する患部の圧迫等を把握することは難しい.本課題では,頭蓋内圧の変動により駆動されるCSF流動を模擬する水理実験装置(流動ファントム)として,弾性二重円管を用いたフレキシブルな装置を開発した.ファントムには疾患を想定した圧迫等を与える事ができ,疾患に伴うヒトのCSF流動や影響の理解の一助になる可能性がある.弾性管を用いたCSF流動ファントムは他に例がなく,さらにMRIによる水塊画像から流れの特徴を機械学習により推論を試みるなど,本課題の学術的意義は大きい.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi