2023 Fiscal Year Final Research Report
Study of cohomology in arithmetic geometry
Project/Area Number |
20K14284
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 数論幾何学 / コホモロジー / 志村多様体 / Langlands対応 / p進Hodge理論 / 対数的幾何学 / プリズマティックコホモロジー / K3曲面 |
Outline of Final Research Achievements |
Arithmetic geometry is a reaserch area where geometric perspective is used to study number theory. In this reaserch, I mainly studied invariants called cohomology. For example, we prove a result that certain parts of the cohomology of Shimura varieties, which are important geometric objects in number theory, vanish. It has application to number theory such as Langlands correspondence. I also contributed to classcailly known problems liek the Tate conjecture, the standard conjecture in the case of self-products of so-called K3 surfaces, an interesting class of geometric objects. Moreoever, I worked on the p-adic Hodge theory, which is a thoery specialized for a fixed prime number p. I introduced a logarithmic version of prismatic cohomology, which was found rather recently, and developed the foundation.
|
Free Research Field |
数論
|
Academic Significance and Societal Importance of the Research Achievements |
志村多様体では予期されていなかった成果を挙げるとともに、FarguesとScholzeとの局所Langlands対応の幾何化プログラムとの関係性を指摘することとなり、国際的にも大変な反響を得た。p進Hodge理論では対数的プリズマティックコホモロジーの基礎理論を構築し、国内外の研究者からもすでに用いられる理論となった。また、K3曲面に関係する特別な場合でのみであるが、古くから重要視されている代数幾何の予想について貢献することができた。これらの成果は学術的意義も十分にあると考えられるだけでなく、現在あるいは今後の国内外での研究を促進するような成果であったといえる。
|