2023 Fiscal Year Research-status Report
遠アーベル幾何と双曲的曲線のモジュライスタックの幾何学的外モノドロミー表現
Project/Area Number |
20K14290
|
Research Institution | Hiroshima University |
Principal Investigator |
飯島 優 広島大学, 先進理工系科学研究科(理), 研究員 (00781197)
|
Project Period (FY) |
2020-04-01 – 2025-03-31
|
Keywords | 双曲的曲線 / 配置空間 / 双曲的曲線のモジュライスタック / 写像類群 |
Outline of Annual Research Achievements |
副有限グロタンディーク・タイヒミューラー群 (射影直線から3点取り除いて得られる双曲的曲線の配置空間の副有限基本群の外部自己同形群にほぼ一致する群) について知られている群論的性質、特に副有限グロタンディーク・タイヒミューラー群の持つ非分解性が1点抜き楕円曲線の配置空間の副有限基本群の外部自己同形群でも同様に成り立つか考察した。副有限グロタンディーク・タイヒミューラー群の非分解性の証明においてフロベニウス写像が重要な役割を果たしていた箇所を、1点抜き楕円曲線の写像類群に含まれるデーン捻りに置き換えることで考察を進めた。ほとんどそのままで上手く動く部分も多かったが、捩れ点抜き楕円曲線の副有限基本群の外部自己同形群と1点抜き楕円曲線のモジュライスタックの関係の考察等、1点抜き楕円曲線のモジュライスタックに関する結果が完全に証明できず、非分解性を決定することができなかった。ただ、この考察を通じて、1点抜き楕円曲線のモジュライスタックの副有限基本群や1点抜き楕円曲線の配置空間の副有限基本群の外部自己同形群の研究において、それらの副有限群を直接調べるだけではなく、捩れ点抜き楕円曲線の副有限基本群への楕円曲線のモジュライスタックの副有限基本群の外モノドロミー表現等、1点抜き楕円曲線のモジュライスタックの被覆の研究の重要性を認識することができた。 研究発表としては、前年度までに投稿した星裕一郎氏との共著を含むいくつかの研究論文が受理されたほか、双曲的曲線のモジュライスタックの外モノドロミー表現に関する講演を行なった。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
1点抜き楕円曲線の配置空間の副有限基本群の外部自己同形群の群論的性質について、有意義と思われる観察はいくつか得られたものの、その非分解性に対して完全に証明を与えることができなかったため。
|
Strategy for Future Research Activity |
これまでの研究の下、引き続き、双曲的曲線のモジュライスタックの幾何学的副l外モノドロミー表現、モノドロミー充満な双曲的曲線及びモノドロミー充満な有理点の研究を進める。特に、令和5年度に得られた考察から、捩れ点抜き楕円曲線の副有限基本群への1点抜き楕円曲線のモジュライスタックの副有限基本群の外モノドロミー表現の重要性が認識された。そのため、この外モノドロミー表現についての考察を進め、1点抜き楕円曲線の配置空間の副有限基本群の外部自己同形群の研究に応用する。
|
Causes of Carryover |
研究遂行のために参加予定であった研究集会の出張費が先方負担になる等の結果、使用予定費の多くが不要になったため。次年度使用額は、ハイブリッド開催の研究集会への参加と講演を円滑に行うための周辺備品及び、研究資料の購入のための物品費や、可能な範囲で研究集会に現地参加するための旅費に活用する予定である。
|