2022 Fiscal Year Research-status Report
超伝導密度汎関数理論とマテリアルズインフォマティクスによる超伝導物質探索
Project/Area Number |
20K15012
|
Research Institution | The University of Tokyo |
Principal Investigator |
河村 光晶 東京大学, 情報基盤センター, 特任講師 (30760574)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 超伝導密度汎関数理論 / 電子フォノン相互作用 / 水素化物超伝導体 / グラフニューラルネットワーク / GPGPU |
Outline of Annual Research Achievements |
H3Sなどの水素化物超伝導体は、質量が最小である水素原子に由来する高い格子振動エネルギーと内核電子が存在ことに由来する大きな電子フォノン相互作用から、フォノン型超伝導体でありながら高いTcを実現している。しかし安定的に存在するためには数百GPaという超高が必要となるため、より低い圧力での水素化物の安定構造の探索が行われている。我々は小正路らによる球充填を指導原理とする構造探索と第一原理構造最適化により、10GPaという比較的低圧で相安定・動的安定となる水素化物の新規構造を予測し、その中の二つH12ScY2SrとH12ScY2Caに対して超伝導密度汎関数理論に基づく第一原理Tc計算を行った。200GPaでのH3SのTcが約190K(計算値)であるのに対してこれらの物質のTcの計算結果は約10Kとなり、超伝導性は発現するもののTcは抑えられていることが分かった。さらなる電子状態の解析により、これらの4元系水素化物では電子軌道が原子位置に局在しており(イオン結合的)、原子間領域に広がった電子状態を持つH3Sとくらべて電子フォノン相互作用が小さくなることが分かった。これらの結果から、電子フォノン相互作用を増強する可能性のある電子状態の実空間分布に関する知見を得た。 21年度に高速化を行った超伝導密度汎関数計算プログラムに関して、さらなる高速化および新規スパコンへの対応のため演算加速装置(GPGPU)を使うように改良を行っている。22年度では演算の重い部分を見つけ出すこと、GPGPU搭載マシンでの実行が可能になる所までを行った。本格的な高速化は23年度に行う。 機械学習による、第一原理計算結果のモデル化については、より多種の元素・構造に対応するためにグラフニューラルネットワークを用いた回帰・分類を行う方法を取り入れ、まずは本番のTcのモデル化の前に状態密度の機械学習を行った。
|
Current Status of Research Progress |
Current Status of Research Progress
4: Progress in research has been delayed.
Reason
機械学習を用いて第一原理計算対象を探索する部分(マテリアルズインフォマティクス)について、従来の記述子とベイズ最適化を用いた方法では幅広い元素や構造の変化に居対応しづらいという事が分かったため、より汎用的であるグラフみゅーらるネットワークを用いた探索に切り替えることにした。そのための情報収集や技術習得、実装に時間がかかっている。 またより効率よく、高速に網羅的第一原理計算を行おうと考えているが、最新のスパコンでは演算加速装置(GPGPU)に対応したプログラミングが必要となり、対応に時間がかかっている。
|
Strategy for Future Research Activity |
GPGPu対応については、計算の重い部分(ボトルネック)のひとつであるフォノン計算に関しては他の研究者らによる対応がすでに行われており、残りのボトルネックである分極関数、遮蔽クーロン相互作用・スピン揺らぎの計算部分についても方針は定まっている。 機械学習部分に関しては、先行するグラフニューラルネットワークを用いた物理量のモデル化手法を試しつつ、具体的なフローの構築を行っている。
|
Causes of Carryover |
22年度では計画通り予算執行を行ったものの、コロナ流行によって会議・出張が無かった20・21年度の繰り越し分があり、次年度使用額が生じた。今後はより多くの計算リソースが必要となるため、情報基盤センターのスパコン利用料としての使用を見込んでいる。
|
Research Products
(4 results)