• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Estimation of cardiac function from chest X-ray images using deep learning.

Research Project

  • PDF
Project/Area Number 20K16798
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2020-2021)

Principal Investigator

Shimazaki Akitoshi  大阪公立大学, 大学院医学研究科, 研究員 (30803100)

Project Period (FY) 2020-04-01 – 2024-03-31
Keywords人工知能 / AI / 深層学習 / Deep learning
Outline of Final Research Achievements

In this study, we developed deep learning models, a type of artificial intelligence, to diagnose mitral regurgitation and aortic stenosis from chest radiographs. The models were created using over 10,000 chest radiographs collected at a single institution and achieved high diagnostic accuracy. These models demonstrated the possibility of diagnosing valvular heart diseases using only chest radiographs without requiring advanced examinations such as echocardiography.

Free Research Field

放射線診断学・IVR学

Academic Significance and Societal Importance of the Research Achievements

本研究は、ディープラーニングを用いることで、胸部レントゲン画像から僧帽弁閉鎖不全症と大動脈弁狭窄症を高い精度で診断できることを世界で初めて示した。弁膜症の診断に心エコー検査が広く用いられているが、本モデルにより、より安価で簡便な胸部レントゲン検査のみでも診断が可能となる。これにより、スクリーニングの拡大や、心エコー検査へのアクセスが制限される地域での弁膜症診断の改善が期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi