2023 Fiscal Year Final Research Report
Statistical inference using auxiliary variables based on optimal transportation
Project/Area Number |
20K19757
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60030:Statistical science-related
|
Research Institution | Hiroshima University |
Principal Investigator |
Imori Shinpei 広島大学, 先進理工系科学研究科(理), 准教授 (80747345)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Keywords | 補助変数 / 最適輸送理論 / フレシェ距離 / Greedy algorithm / 共変量シフト / ガンマダイバージェンス |
Outline of Final Research Achievements |
Use of auxiliary variables based on the optimal transportation (Wasserstein distance) is studied. An upper evaluation of Wasserstein distance between two mixture distributions in complete data is developed. A property of the Frechet distance when using auxiliary variables and the convergence rate of estimators of the Frechet distance are investigated. Moreover, convergence rates of greedy algorithms under the covariate shift or based on the Gamma divergence are derived.
|
Free Research Field |
数理統計学
|
Academic Significance and Societal Importance of the Research Achievements |
有用な補助変数を活用することで主要変数の推定精度の向上が見込まれるため,その理論的な性質の解明は重要である.本研究で導出したWasserstein距離の評価式やフレシェ距離の推定量の収束レートは,これまでの補助変数の活用では考えられていなかったため,今後の補助変数の活用,選択手法の開発の基盤になりうると期待される.また,貪欲法に関する研究内容は高次元データにおける効率的な解析に役立つと考えられる.
|