2021 Fiscal Year Final Research Report
A Benchmark for Video-Like Urban Computing on Citywide Crowd and Traffic Prediction
Project/Area Number |
20K19859
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 61030:Intelligent informatics-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
JIANG Renhe 東京大学, 情報基盤センター, 助教 (20865266)
|
Project Period (FY) |
2020-04-01 – 2022-03-31
|
Keywords | Smart City / Spatiotemporal Data / Deep Learning / Transportation / Urban Mobility / Crowd Flow / Benchmark |
Outline of Final Research Achievements |
Predicting the density and flow of the crowd or traffic at a citywide level becomes possible by using the big data and cutting-edge AI technologies. It has been a very significant research topic with high social impact, which can be widely applied to emergency management, traffic regulation, and urban planning. By meshing a large urban area to a number of fine-grained mesh-grids, citywide crowd and traffic information in a continuous time period can be represented like a video, where each timestamp can be seen as one video frame. Based on this idea, a series of methods have been proposed to address video-like prediction for citywide crowd and traffic. Through this research, we build a standard benchmark for such kind of urban computing problems based on multiple open datasets. The research achievement was awarded by CIKM 2021 Best Resource Paper Runner-Up.
|
Free Research Field |
知能情報学
|
Academic Significance and Societal Importance of the Research Achievements |
近年、IoT(Internet of Things:モノのインターネット)、ビッグデータ、人工知能技術の急速な発展に伴い、スマートシティは新しい科学技術分野として各国の学術界、産業界および各国政府から非常に重視されている。そこで、人を中核としたスマートシティの実現に最も重要な研究課題と技術は、都市規模の人流・交通流の知覚、分析、シミュレーション、予測である。本研究提案をスマートシティ構築のためのキーテクノロジーと位置づけ、Japan Society 5.0の実現に大きく貢献し、画像処理と自然言語処理以外の人工知能・データサイエンス研究を大きく発展させることを期待するものである。
|