• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of motion teaching robot system and self-posture-evaluation method toward care prevention

Research Project

  • PDF
Project/Area Number 20K20263
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 90150:Medical assistive technology-related
Research InstitutionAdvanced Telecommunications Research Institute International

Principal Investigator

TAKAI Asuka  株式会社国際電気通信基礎技術研究所, 脳情報通信総合研究所, 客員研究員 (70769843)

Project Period (FY) 2020-04-01 – 2023-03-31
Keywords動作教示ロボット / 脳波解析 / 運動データ解析 / モデリング
Outline of Final Research Achievements

The objective of this study is to develop an assistive system aimed at mitigating the decline in physical function among healthy elderly individuals aged 70 to 80 years. The proposed system utilizes robotic technology to provide instruction on correct posture and precise movements, thereby promoting independence and reducing the need for caregiving. The research focuses on four key aspects: examining the correlation between motor performance and brain activity during robot-guided training, estimating the potential for performance enhancement through robotic training based on initial motor capabilities, identifying factors that influence motor strategies in collaborative tasks involving robots, and designing a robot that facilitates optimal sit-to-stand movements. However, as a consequence of COVID-19 pandemic, it was not allowed to conduct experiments involving elderly participants (aged 65 years and above). Thus, this study was conducted on healthy young adults instead of elderlies.

Free Research Field

ヒューマンインタフェース・ヒューマンインタラクション

Academic Significance and Societal Importance of the Research Achievements

本研究は、独自の脳・ロボット介入フィードバックを利用して、個々の人に最適な運動教示方法を評価し、動作を学習させるのに適切な条件を調査することを目指している。運動教示ロボットを用いた運動学習における影響要因を明らかにすることは、機能予後に応じた支援方法の構築に寄与すると考えられる。また、身体機能に応じた最適な教示手法を選択する方法論の構築に貢献すると期待できる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi