2023 Fiscal Year Final Research Report
Pattern analysis without seeing patterns: Understanding diversity recognition bias through model-based quantification
Project/Area Number |
20K21814
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 61:Human informatics and related fields
|
Research Institution | Osaka University |
Principal Investigator |
MIYAZAWA Seita 大阪大学, 大学院生命機能研究科, 特任准教授(常勤) (10377905)
|
Project Period (FY) |
2020-07-30 – 2024-03-31
|
Keywords | 模様パターン |
Outline of Final Research Achievements |
When observing patterns found in nature, such as animal body surface patterns, we unconsciously identify and classify them. Since differences in patterns seem to be "visually apparent" to anyone, there has been a tendency to consider "completely different color patterns" as solid evidence of a new or different species. In this research project, we explored a method of pattern quantification that does not rely on visual inspection (i.e., subjective intuition). By combining pattern analysis with phylogenetic analyses, it was suggested that there may be some biases in our intuitive pattern recognition and diversity perception.
|
Free Research Field |
生物多様性・進化
|
Academic Significance and Societal Importance of the Research Achievements |
生物多様性を客観的に捉え、認識する上では、対象となる形質を定量的に評価する基準が不可欠です。動物体表の模様パターンのような複雑な形質について、研究者の経験や「目」に頼らない、客観的・定量的な基準の可能性を新たに提示したという意味で、本研究で検討したパターン定量化手法は意義をもつと考えられます。本研究の成果をもとに、より高次の形質に対しても適用できるようになれば、これら形質の多様性を生み出すゲノム基盤へのアプローチも可能となり、生物多様性の構造や進化プロセスに対する我々の認識にも変革がもたらされると期待されます。
|