• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Pattern analysis without seeing patterns: Understanding diversity recognition bias through model-based quantification

Research Project

  • PDF
Project/Area Number 20K21814
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 61:Human informatics and related fields
Research InstitutionOsaka University

Principal Investigator

MIYAZAWA Seita  大阪大学, 大学院生命機能研究科, 特任准教授(常勤) (10377905)

Project Period (FY) 2020-07-30 – 2024-03-31
Keywords模様パターン
Outline of Final Research Achievements

When observing patterns found in nature, such as animal body surface patterns, we unconsciously identify and classify them. Since differences in patterns seem to be "visually apparent" to anyone, there has been a tendency to consider "completely different color patterns" as solid evidence of a new or different species. In this research project, we explored a method of pattern quantification that does not rely on visual inspection (i.e., subjective intuition). By combining pattern analysis with phylogenetic analyses, it was suggested that there may be some biases in our intuitive pattern recognition and diversity perception.

Free Research Field

生物多様性・進化

Academic Significance and Societal Importance of the Research Achievements

生物多様性を客観的に捉え、認識する上では、対象となる形質を定量的に評価する基準が不可欠です。動物体表の模様パターンのような複雑な形質について、研究者の経験や「目」に頼らない、客観的・定量的な基準の可能性を新たに提示したという意味で、本研究で検討したパターン定量化手法は意義をもつと考えられます。本研究の成果をもとに、より高次の形質に対しても適用できるようになれば、これら形質の多様性を生み出すゲノム基盤へのアプローチも可能となり、生物多様性の構造や進化プロセスに対する我々の認識にも変革がもたらされると期待されます。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi