2023 Fiscal Year Final Research Report
Analysis of mathematical structure of pattern dynamics for compressible fluid
Project/Area Number |
20K22308
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Ehime University (2021-2023) Okayama University (2020) |
Principal Investigator |
Teramoto Yuka 愛媛大学, 理工学研究科(理学系), 助教 (60883262)
|
Project Period (FY) |
2020-09-11 – 2024-03-31
|
Keywords | 圧縮性Navier-Stokes方程式 / 液晶 / 漸近挙動 |
Outline of Final Research Achievements |
I studied about liquid crystals which have the property of being anisotropic. Ericksen-Leslie system couples the Navier-Stokes equations governing the fluid velocity with direction equation governing the motion of orientation of rod-like particles. I proved the existence of global strong solutions, its decay rates and the asymptotic behavior for non-isothermal simplified Ericksen-Leslie system in infinite layer. It turns out that the low-frequency part of the solution decays like a 2-dimensional heat kernel. We can also see that the low-frequency part appears in the asymptotic reading part of the solution which is affected by nonlinear terms as time goes to infinity.
|
Free Research Field |
数学
|
Academic Significance and Societal Importance of the Research Achievements |
Ericksen-Leslie systemは液晶の流れを記述する方程式であり,流体の運動や,細長い棒状分子の向きや曲げ伸ばしの影響も考慮されている.そのため豊富な非線形相互作用を観察することができ,学術的価値がある.液晶は温度によってその様相を変化させるが,非等温下での解析を行った結果は少ない.温度を変数として加えた方程式の解析は物理学,工学にも寄与するものと考えられる.
|