• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Infinite dimensional geometry of Kac-Moody groups and integrable systems

Research Project

  • PDF
Project/Area Number 20K22309
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionOsaka Metropolitan University (2022)
Osaka City University (2020-2021)

Principal Investigator

Morimoto Masahiro  大阪公立大学, 大学院理学研究科, 特任助教 (60880747)

Project Period (FY) 2020-09-11 – 2023-03-31
Keywordsカッツ・ムーディ幾何学 / 無限次元部分多様体
Outline of Final Research Achievements

We obtained the following results which deepen the relation between infinite dimensional submanifold geometry and Kac-Moody geometry: We gave an explicit formula for orbits of path group actions given as isotropy representations of affine Kac-Moody symmetric spaces. We newly defined a certain isomorphism of path spaces and unified all known computational results of principal curvatures of proper Fredholm submanifolds. We showed that the isomorphism corresponds to an isomorphism of affine Kac-Moody symmetric spaces of group type. As an application of these we constructed many examples of infinite dimensional austere submanifolds.

Free Research Field

微分幾何学

Academic Significance and Societal Importance of the Research Achievements

カッツ・ムーディ代数は,無限の対称性を記述する言語として,数学や物理の様々な分野で現れる.しかし,無限である故にその取り扱いが難しく,特にカッツ・ムーディ群は,これまで避けられることが多かった.本研究では,無限次元部分多様体幾何学とカッツ・ムーディ幾何学の観点から,カッツ・ムーディ代数・群や関連分野に対する理解を深めることができた.これは数学や物理の基礎研究において,1つの基盤となる意義のある成果であると考えている.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi