2022 Fiscal Year Final Research Report
Infinite dimensional geometry of Kac-Moody groups and integrable systems
Project/Area Number |
20K22309
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Osaka Metropolitan University (2022) Osaka City University (2020-2021) |
Principal Investigator |
|
Project Period (FY) |
2020-09-11 – 2023-03-31
|
Keywords | カッツ・ムーディ幾何学 / 無限次元部分多様体 |
Outline of Final Research Achievements |
We obtained the following results which deepen the relation between infinite dimensional submanifold geometry and Kac-Moody geometry: We gave an explicit formula for orbits of path group actions given as isotropy representations of affine Kac-Moody symmetric spaces. We newly defined a certain isomorphism of path spaces and unified all known computational results of principal curvatures of proper Fredholm submanifolds. We showed that the isomorphism corresponds to an isomorphism of affine Kac-Moody symmetric spaces of group type. As an application of these we constructed many examples of infinite dimensional austere submanifolds.
|
Free Research Field |
微分幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
カッツ・ムーディ代数は,無限の対称性を記述する言語として,数学や物理の様々な分野で現れる.しかし,無限である故にその取り扱いが難しく,特にカッツ・ムーディ群は,これまで避けられることが多かった.本研究では,無限次元部分多様体幾何学とカッツ・ムーディ幾何学の観点から,カッツ・ムーディ代数・群や関連分野に対する理解を深めることができた.これは数学や物理の基礎研究において,1つの基盤となる意義のある成果であると考えている.
|