2021 Fiscal Year Final Research Report
Mathematical Analysis of the incompressible viscous fluid with the moving contact line
Project/Area Number |
20K22311
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Waseda University |
Principal Investigator |
Watanabe Keiichi 早稲田大学, 理工学術院, 講師(任期付) (30875365)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Keywords | ナビエ・ストークス方程式 / 自由境界問題 / 最大正則性 / 関数方程式論 / 接触角 |
Outline of Final Research Achievements |
The free boundary problem of the Navier-Stokes equations is considered with the 90 degrees contact angle condition. Here, the fluid occupies a three-dimensional bounded domain, and free boundary conditions and slip boundary conditions are imposed on the boundary of the domain. In this study, for a given time, the local appropriateness of the system is proved with Lp-in-time and Lq-in-space framework.
The stability of the free boundary problem of the Navier-Stokes equations is also studied, where the domain occupied by the fluid is bounded surrounded by a smooth boundary. The stability of the axisymmetric stationary solution is characterized by the positiveness of the second variation of the energy functional associated with the Euler-Lagrangian equation which determines the free boundary in the equilibrium.
|
Free Research Field |
偏微分方程式論
|
Academic Significance and Societal Importance of the Research Achievements |
接触角を伴う Navier-Stokes 方程式の自由境界問題の適切性に関する本研究の結果は,Wilke (2013) で考えられていた境界条件の一部を修正し,より一般の関数空間で方程式系の適切性を示したものである. 一方,表面張力を伴う Navier-Stokes 方程式の自由境界問題の(軸対称な)非自明な定常解の安定性についての特徴づけの結果は,1800年代の Plateau の古典的結果を正当化する大変興味深いものである.
|