2022 Fiscal Year Research-status Report
マッチング問題の代数的拡張に対する組合せ的アプローチ
Project/Area Number |
20K23323
|
Research Institution | Kyoto University |
Principal Investigator |
岩政 勇仁 京都大学, 情報学研究科, 助教 (70854602)
|
Project Period (FY) |
2020-09-11 – 2024-03-31
|
Keywords | Edmonds問題 / 重み付きEdmonds問題 / 非可換Edmonds問題 / 重み付き非可換Edmonds問題 / 線形マトロイド交叉 |
Outline of Annual Research Achievements |
2×2型分割多項式行列の小行列式最大次数列を求める組合せ的強多項式時間アルゴリズムを提案した論文"A combinatorial algorithm for computing the degree of the determinant of a generic partitioned polynomial matrix with 2×2 submatrices"が,Mathematical Programming, Series Aに採択された.また,この成果をThe 12th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (JH 2023)で発表し,多数の有用なフィードバックを得た. また,Edmonds問題の特殊クラスである線形マトロイド交叉に対して,「遷移可能性」という観点から研究を行った.それにより,有向木(グラフ的マトロイドと分割マトロイドの交叉)の遷移可能性判定問題が多項式時間で解けることが判明した.この成果をまとめた論文"Reconfiguring (non-spanning) arborescences"が論文誌Theoretical Computer Scienceに採択された.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
これまでの成果が順調に論文誌に採択されており,それらを進展させた研究も進められているため,順調であると言える.
|
Strategy for Future Research Activity |
重み付き(非可換)Edmonds問題に取り組む.特に行列の形を限定しない一般的な設定に対するアルゴリズムの構築を目指す.
|
Causes of Carryover |
海外出張時の宿泊費を先方が負担してくれたため. 本研究課題に関する研究により招待された来年度開催される国際学会発表時の渡航費に用いる.
|