2013 Fiscal Year Final Research Report
AdS/CFT correspondence and GIT stablity
Project/Area Number |
21244003
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | The University of Tokyo (2012-2013) Tokyo Institute of Technology (2009-2011) |
Principal Investigator |
FUTAKI Akito 東京大学, 数理(科)学研究科(研究院), 教授 (90143247)
|
Co-Investigator(Kenkyū-buntansha) |
YASUI Yukinori 大阪市立大学, 大学院理学研究科, 准教授 (30191117)
|
Co-Investigator(Renkei-kenkyūsha) |
MABUCHI Toshiki 大阪大学, 大学院理学研究科, 教授 (80116102)
AKUTAGAWA Kazuo 東京工業大学, 大学院理工学研究科, 教授 (80192920)
ONO Kaoru 京都大学, 数理解析研究所, 教授 (20204232)
NAKAJIMA Hiraku 京都大学, 数理解析研究所, 教授 (00201666)
ONO Hajime 埼玉大学, 大学院理工学研究科, 准教授 (70467033)
|
Project Period (FY) |
2009-04-01 – 2014-03-31
|
Keywords | アインシュタイン計量 / ケーラー多様体 / 佐々木多様体 / Fano多様体 / 平均曲率流 / リッチ・ソリトン / 自己相似解 |
Research Abstract |
A general existence result of toric Sasaki-Einstein metrics was established. As its application, an eternal solution of Kaehler Ricci flow was constructed on the canonical line bundle of toric Fano Manifolds. On polarized manifolds with non-discrete automorphisms, it is shown that there are integral invariants which obstruct asymptotic Chow semi-stability. Using them it is possible to show the existence of a toric Fano Kaehler-Einstein manifold which is asymptotically unstable. It has been shown by S.K.Donaldson that a polarized manifolds with constant scalar curvature and with discrete automorphisms is asymptotically Chow-stable. A universal lower diameter bound for compact shrinking Ricci solitons was obtained.
|
Research Products
(49 results)