2011 Fiscal Year Final Research Report
Research on the derivative of L-functions and automorphic forms
Project/Area Number |
21540014
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
IKEDA Tamotsu 京都大学, 大学院・理学研究科, 教授 (20211716)
HIRAGA Kaoru 京都大学, 大学院・理学研究科, 講師 (10260605)
UMEDA Tooru 京都大学, 大学院・理学研究科, 准教授 (00176728)
YAMASAKI Aiichi 京都大学, 大学院・理学研究科, 准教授 (10283590)
|
Project Period (FY) |
2009 – 2011
|
Keywords | 志村-谷山予想 / cohomology群 / L函数の特殊値 |
Research Abstract |
We formulated a generalization of the Shimura-Taniyama conjecture, which is a fundamental problem in the theory of automorphic forms. We showed that an explicit calculation of special values of the L-function attached to a Hilbert modular form is possible using the second cohomology group ; Here Hilbert modular forms are associated to a real quadratic field. We studied exceptional zeros of Selberg zeta functions in view of the noncongruence property of Fuchsian groups.
|
Research Products
(16 results)