• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2011 Fiscal Year Final Research Report

Study on a chemotaxis equation in the two-dimensional whole space

Research Project

  • PDF
Project/Area Number 21540182
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionHiroshima University

Principal Investigator

NAGAI Toshitaka  広島大学, 大学院・理学研究科, 教授 (40112172)

Research Collaborator YAMADA Tetsuya  広島大学, 大学院・理学研究科, 特任助教
Project Period (FY) 2009 – 2011
Keywords非線形編微分方程式 / 走化性方程式 / Keller-Segel方程式 / 時間大域解 / 減衰評価 / 前進自己相似解 / 漸近挙動
Research Abstract

We considered a simplified Keller-Segel equation(parabolic-elliptic system) in the two-dimensional whole space, which is a mathematical model of chemotaxis, and studied the global existence, uniqueness, boundedness and large-time behavior of nonnegative solutions to the Cauchy problem of the equation. We first established the local existence in time, uniqueness and regularity of mild solutions. In the subcritical case, we showed the global existence in time and decay estimates of nonnegative mild solutions without decay conditions of initial data, and then the convergence to a forward self-similar solution and convergence rates.

  • Research Products

    (19 results)

All 2011 2010 2009

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (15 results)

  • [Journal Article] Global existence and decay estimates of solutions to a parab olic-elliptic system of drift-diffusion type in R^22011

    • Author(s)
      Toshitaka Nagai
    • Journal Title

      Differential Integral Equati ons

      Volume: 24 Pages: 29-68

    • Peer Reviewed
  • [Journal Article] Brezis-Merle inequalities and applicati on to the global existence of the Cauch y problem of the Keller-Segel system2011

    • Author(s)
      Toshitaka Nagai and Takayoshi Ogawa
    • Journal Title

      Commun. Contemp. Math

      Volume: 13 Pages: 795-812

    • Peer Reviewed
  • [Journal Article] Convergence to self similarsolutions for a parabolic-ellip tic system of drift-diffusion type in R^2, Adv2011

    • Author(s)
      Toshitaka Nagai
    • Journal Title

      Differential Equations

      Volume: 16 Pages: 839-866

    • Peer Reviewed
  • [Journal Article] Global Solvability for a chemotaxis system in R^22009

    • Author(s)
      Toshitaka Nagai
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B15 Pages: 101-111

    • Peer Reviewed
  • [Presentation] Convergence to self-similar solutions for a parabolic-elliptic system of drift-diffusion type in R^22011

    • Author(s)
      Toshitaka Nagai
    • Organizer
      Sino-Chilean Conference on Nonlinear Partial Differential Equations and Nonlinear Analysis
    • Place of Presentation
      Wuhan China
    • Year and Date
      2011-12-08
  • [Presentation] Dynamics of solutions to a chemotaxis model in R^2 with critical mass2011

    • Author(s)
      永井敏隆
    • Organizer
      北九州における偏微分方程式研究集会
    • Place of Presentation
      北九州市
    • Year and Date
      2011-11-26
  • [Presentation] A parabolic-elliptic system of drift-diffusion type with critical mass in R^22011

    • Author(s)
      Toshitaka Nagai
    • Organizer
      International Workshop on Modeling and Analysis of PDE Systems of Biological Processes
    • Place of Presentation
      Beijing China
    • Year and Date
      2011-10-18
  • [Presentation] 関数の再配列の走化性方程式への応用2011

    • Author(s)
      永井敏隆
    • Organizer
      2011年度日本数学会秋季総合分科会函数方程式論分科会
    • Place of Presentation
      松本市
    • Year and Date
      2011-10-01
  • [Presentation] A parabolic-elliptic system of drift-diffusion type in two space dimensions for the critical mass case2011

    • Author(s)
      Toshitaka Nagai
    • Organizer
      Workshop on Nonlinear Partial Differential Equations
    • Place of Presentation
      Madrid Spain
    • Year and Date
      2011-09-09
  • [Presentation] A parabolic-elliptic system of drift-diffusion type with subcritical mass in R^22011

    • Author(s)
      Toshitaka Nagai
    • Organizer
      Nonlinear Models in Partial Differential Equations
    • Place of Presentation
      Toledo Spain
    • Year and Date
      2011-07-14
  • [Presentation] A parabolic-elliptic system ofdrift-diffusion type in R^2 for the subcritical case2011

    • Author(s)
      永井敏隆
    • Organizer
      流体と気体の数学解析
    • Place of Presentation
      京都市
    • Year and Date
      2011-07-08
  • [Presentation] Convergence to self-similar solutions for a parabolic-elliptic system of drift-diffusion type in two dimensions2010

    • Author(s)
      永井敏隆
    • Organizer
      第8回偏微分方程式ワークショップ
    • Place of Presentation
      長崎県壱岐市
    • Year and Date
      20100328-0330
  • [Presentation] Convergence to self-similar solutions for a parabolic-elliptic system of drift-diffusion type in R^22010

    • Author(s)
      永井敏隆
    • Organizer
      北九州における偏微分方程式研究集会
    • Place of Presentation
      北九州市
    • Year and Date
      2010-11-13
  • [Presentation] A parabolic-elliptic system of drift-diffusion type in two dimensions with subcritical initial data2010

    • Author(s)
      永井敏隆
    • Organizer
      新潟偏微分方程式研究会
    • Place of Presentation
      新潟市
    • Year and Date
      2010-10-10
  • [Presentation] A parabolic-elliptic system of drift-diffusion type in two dimensions with subcritical initial data, The 8^<th> AIMS Conference on DynamicalSystems2010

    • Author(s)
      Toshitaka Nagai
    • Organizer
      Differential Equations and Applications
    • Place of Presentation
      Dresden Germany
    • Year and Date
      2010-05-26
  • [Presentation] 走化性方程式の臨界現象2010

    • Author(s)
      永井敏隆
    • Organizer
      2010年度日本数学会年会
    • Place of Presentation
      横浜市
    • Year and Date
      2010-03-26
  • [Presentation] 走化性方程式の数学解析2009

    • Author(s)
      永井敏隆
    • Organizer
      九州非線形偏微分方程式冬の学校
    • Place of Presentation
      福岡市
    • Year and Date
      20091106-07
  • [Presentation] Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type2009

    • Author(s)
      永井敏隆
    • Organizer
      北九州における偏微分方程式研究集会
    • Place of Presentation
      北九州市
    • Year and Date
      2009-11-28
  • [Presentation] 非局所項を持つ2次元非線形放物型方程式の時間大域解の存在及び減衰評価2009

    • Author(s)
      永井敏隆
    • Organizer
      応用解析研究会
    • Place of Presentation
      東京都
    • Year and Date
      2009-11-21

URL: 

Published: 2013-07-31  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi