• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2011 Fiscal Year Final Research Report

Development of method to analyze the high-dimensional and small-sample data based on machine learning and its application to cryptanalysis

Research Project

  • PDF
Project/Area Number 21700308
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Statistical science
Research InstitutionKyushu University

Principal Investigator

KAWAKITA Masanori  九州大学, システム情報科学研究院・情報学部門 (90435496)

Project Period (FY) 2009 – 2011
Keywords統計的学習理論 / n<<p問題 / 変数選択
Research Abstract

It is already known that the estimation accuracy of supervised learning can be improved by using the unlabeled data even when the number of labeled data is quite small. This type of learning is called semi-supervised learning. The most conventional semi-supervised learning requires some additional assumptions to dominate the supervised learning even though we have additional information. Further, as for model selection, the conventional criteria(including AIC or CV) are applied to the labeled data. However, because such criteria require a large number of labeled data, they do not work well in this setting. Our main result is that we solved these problems.

  • Research Products

    (11 results)

All 2011 2010 2009

All Presentation (11 results)

  • [Presentation] 安全な半教師付き回帰のクラスとそのモデル選択2011

    • Author(s)
      川喜田雅則
    • Organizer
      ミニワークショップ統計多様体の幾何学とその周辺(3)/幾何学と諸科学の連携調査
    • Place of Presentation
      北海道大学
    • Year and Date
      20111201-04
  • [Presentation] A class of semi-supervised regression based on density ratio estimation2011

    • Author(s)
      Kawakita, M.
    • Organizer
      ENSEEIHT-Kyushu University Workshop on Data Mining and Media Processing
    • Place of Presentation
      ENSEEIHT
    • Year and Date
      20111024-25
  • [Presentation] 情報幾何学と統計多様体上の一般化共形構造の周辺密度比推定を用いた半教師付き回帰法の改良2010

    • Author(s)
      川喜田雅則,竹内純一
    • Organizer
      情報幾何学と統計多様体上の一般化共形構造の周辺
    • Place of Presentation
      東北学院大学多賀城キャンパス
    • Year and Date
      20101217-18
  • [Presentation] 半教師付き回帰のためのモデル選択2010

    • Author(s)
      川喜田雅則
    • Organizer
      情報幾何学と統計多様体上の一般化共形構造の周辺
    • Place of Presentation
      東北学院大学多賀城キャンパス
    • Year and Date
      20101217-18
  • [Presentation] 大標本仮定を必要としない半教師付き回帰のモデル選択2010

    • Author(s)
      川喜田雅則,竹内純一
    • Organizer
      第13回情報論的学習理論ワークショップ
    • Place of Presentation
      東京大学駒場キャンパス
    • Year and Date
      20101104-06
  • [Presentation] A note on model selection for small sample regression2010

    • Author(s)
      Kawakita, M., Oie, Y. and Takeuchi, J.
    • Organizer
      International Symposium on Information Theory and its Applications 2010
    • Place of Presentation
      Taichung, Taiwan
    • Year and Date
      20101017-20
  • [Presentation] Semi-supervised learning in view of estimating functions2010

    • Author(s)
      Kawakita, M. and Takeuchi, J.
    • Organizer
      Information Geometry And Its Applications III
    • Year and Date
      20100402-06
  • [Presentation] ラベル無しデータを利用した回帰の改良2010

    • Author(s)
      川喜田雅則,竹内純一
    • Organizer
      第十二回人口知能学会データマイニングと統計数理研究会(SIG-DMSM)
    • Place of Presentation
      統計数理研究所
    • Year and Date
      20100329-30
  • [Presentation] A new method of improving predictive distribution without Bayes estimation2009

    • Author(s)
      Kawakita, M. and Takeuchi, J.
    • Organizer
      情報理論とその応用シンポジウム2009
    • Place of Presentation
      山口県湯田温泉ホテルかめ福
    • Year and Date
      20091201-04
  • [Presentation] ベイズ推定を用いない曲指数型分布族の推定量の改善2009

    • Author(s)
      川喜田雅則,竹内純一
    • Organizer
      第12回情報論的学習理論ワークショップ(IBIS 2009)
    • Place of Presentation
      九州大学(病院地区百年講堂)
    • Year and Date
      20090919-21
  • [Presentation] 情報幾何によるブースティングの性能の考察2009

    • Author(s)
      川喜田雅則
    • Organizer
      データ科学特別セミナー
    • Place of Presentation
      大阪大学
    • Year and Date
      2009-07-15

URL: 

Published: 2013-07-31  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi