• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2011 Fiscal Year Final Research Report

P-adic L-function and P-adic Beilinson conjecture

Research Project

  • PDF
Project/Area Number 21740009
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionTohoku University

Principal Investigator

KOBAYASHI Shinichi  東北大学, 大学院・理学研究科, 准教授 (80362226)

Project Period (FY) 2009 – 2011
Keywordsゼータ関数 / 岩澤理論 / p-進L-関数 / p進Beilinson予想 / Birch and Swinnerton-Dyer予想 / 楕円曲線 / 整数論
Research Abstract

I studied the p-adic L-function of elliptic curves defined over the rational number field. I obtained the p-adic Gross-Zagier formula at supersingular prime p that describes the derivative of the p-adic L-function of elliptic curves base changed over an imaginary quadratic field satisfying the Heegner condition in terms of the p-adic height of the Heegner point. As an application, I proved the full Birch and Swinnerton-Dyer conjecture for CM elliptic curves of rank 1 up to bad primes. This formula also gives an important example of the p-adic Beilinson conjecture.

  • Research Products

    (20 results)

All 2012 2011 2010 2009

All Journal Article (5 results) (of which Peer Reviewed: 5 results) Presentation (15 results)

  • [Journal Article] The p-adic Gross-Zagier formula for elliptic curves at supersingular primes2012

    • Author(s)
      Shinichi Kobayashi
    • Journal Title

      Inventiones mathematicae

      Volume: (掲載決定)

    • Peer Reviewed
  • [Journal Article] On the p-adic Gross-Zagier formula for elliptic curves at supersingular primes2012

    • Author(s)
      Shinichi Kobayashi
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: (掲載決定)

    • Peer Reviewed
  • [Journal Article] On the de Rham and p-adic realizationsof the elliptic polylogarithm for CMelliptic curves2010

    • Author(s)
      Kenichi Bannai, Shinichi Kobayashi, Takeshi Tsuji
    • Journal Title

      Les AnnalesScientifiques de l' Ecole NormaleSuperieure

      Volume: 43. no.2 Pages: 185-234

    • Peer Reviewed
  • [Journal Article] Algebraic theta functions and p-adicinterpolation of Eisenstein-Kroneckernumbers2010

    • Author(s)
      Kenichi Bannai, Shinichi Kobayashi
    • Journal Title

      Duke mathematical journal

      Volume: 153. No.2 Pages: 229-295

    • Peer Reviewed
  • [Journal Article] Realizations of the elliptic polylogarithm for CM elliptic curves2009

    • Author(s)
      Kenichi Bannai, Shinichi Kobayashi, Takeshi Tsuji
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B12 Pages: 33-50

    • Peer Reviewed
  • [Presentation] Torsion points on the quotient of a Fermat Jacobian via Anderson's p-adic soliton theory II2012

    • Author(s)
      Shinichi Kobayashi
    • Organizer
      2012 NCTS Mini-Workshop on Number Theory
    • Place of Presentation
      National Tsinghua University, Taiwan
    • Year and Date
      2012-03-07
  • [Presentation] The p-adic Gross-Zagier formula for elliptic curves at supersingular primes2012

    • Author(s)
      Shinichi Kobayashi
    • Organizer
      East Asia Number Theory Conference
    • Place of Presentation
      National Taiwan University. Taiwan
    • Year and Date
      2012-01-16
  • [Presentation] 超特異素点におけるp進Gross-Zagier公式について2011

    • Author(s)
      小林真一
    • Organizer
      数論幾何セミナー
    • Place of Presentation
      北海道大学
    • Year and Date
      20110117-18
  • [Presentation] The p-adic Gross-Zagier formula for elliptic curves at supersingular primes2011

    • Author(s)
      Shinichi Kobayashi
    • Organizer
      PanAsian Number Theory Conference
    • Place of Presentation
      Morningside Center of Mathematics, Beijing. China
    • Year and Date
      2011-08-26
  • [Presentation] 超特異素点におけるp進Gross-Zagier公式について2011

    • Author(s)
      小林真一
    • Organizer
      代数学コロギウム
    • Place of Presentation
      東京大学数理科学研究科
    • Year and Date
      2011-01-26
  • [Presentation] 超特異素点におけるp進Gross-Zagier公式についてI, II2010

    • Author(s)
      小林真一
    • Organizer
      数論幾何ワークショップ2010
    • Place of Presentation
      沖縄尚学高等学校
    • Year and Date
      20100805-06
  • [Presentation] 超特異素点におけるp進Gross-Zagier公式について2010

    • Author(s)
      小林真一
    • Organizer
      代数的整数論とその周辺
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2010-12-07
  • [Presentation] 超特異素点におけるp進Gross-Zagier公式について2010

    • Author(s)
      小林真一
    • Organizer
      大阪大学整数論 & 保型形式セミナー
    • Place of Presentation
      大阪大学
    • Year and Date
      2010-11-12
  • [Presentation] 超特異素点におけるp進Gross-Zagier公式について2010

    • Author(s)
      小林真一
    • Organizer
      L-関数の特殊値と数論幾何
    • Place of Presentation
      美山町自然文化村河鹿荘
    • Year and Date
      2010-10-08
  • [Presentation] Mazur-Tateのp-進テータ関数とその周辺2010

    • Author(s)
      小林真一
    • Organizer
      P進佐藤理論と数論幾何
    • Place of Presentation
      東北大学
    • Year and Date
      2010-09-30
  • [Presentation] 超特異素点におけるp進Gross-Zagier公式について2010

    • Author(s)
      小林真一
    • Organizer
      岩澤セミナー
    • Place of Presentation
      慶応大学
    • Year and Date
      2010-07-31
  • [Presentation] 超特異素点における楕円曲線のp進L関数の微分値について2010

    • Author(s)
      小林真一
    • Organizer
      東北大学整数論セミナー
    • Place of Presentation
      東北大学
    • Year and Date
      2010-05-17
  • [Presentation] 超特異素点における楕円曲線のp進L関数の微分値について2010

    • Author(s)
      小林真一
    • Organizer
      名古屋大学数論幾何セミナー
    • Place of Presentation
      名古屋大学
    • Year and Date
      2010-02-09
  • [Presentation] Integral structures on p-adic Fourier theory2010

    • Author(s)
      小林真一
    • Organizer
      2010 Korea-Japan Number Theory
    • Place of Presentation
      Seoul National University
    • Year and Date
      2010-01-20
  • [Presentation] Mumfordの代数的テータ関数とp-進テータ関数2009

    • Author(s)
      小林真一
    • Organizer
      P-adic Special functions & Arithmetic Geometry
    • Place of Presentation
      蔵王ゆと森倶楽部
    • Year and Date
      2009-10-31

URL: 

Published: 2013-07-31  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi