2023 Fiscal Year Final Research Report
High-Speed-AFM Analysis of Structural and Mechanical Properties of Single Protein under Mechanical Stimulation
Project/Area Number |
21H01772
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 28040:Nanobioscience-related
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 高速原子間力顕微鏡 / 機械ストレス / 一分子観察 / 微小管 / アクチン線維 / 動態解析 / 膜結合タンパク質 |
Outline of Final Research Achievements |
In this study, a uniaxial extension system was developed to analyze the mechanical response of proteins using high-speed atomic force microscopy (AFM). With this system, tensile stress was applied to proteins immobilized on PDMS substrates, and the mechanical responses of actin filaments, microtubules, and membrane-bound proteins were observed in real-time. Specifically, the affinity changes of binding proteins in actin filaments, the bending behavior of microtubules, and the membrane tension-dependent membrane-binding capacity of the BAR domain protein BIN1 were analyzed. In actin filaments, the correlation between tension-dependent changes in local structure and changes in binding protein affinity was clarified. The effect on kinesin sliding movement was analyzed by examining the bending behavior of microtubules. This study has laid the foundations for understanding the mechano-response dynamics of mechanosensor proteins at the molecular level.
|
Free Research Field |
生物物理学
|
Academic Significance and Societal Importance of the Research Achievements |
学術的意義は、高速AFMと一軸伸長装置を組み合わせることで、生理的条件下でのタンパク質の力学的応答を分子レベルでリアルタイムに解析できる新たな手法を確立したことにある。この手法により、アクチン線維や微小管、膜結合タンパク質の力学応答を分子レベルで明らかにする基盤技術を確立した。 社会的意義としては、メカノバイオロジーの理解が深まることで、細胞の機械的刺激に対する応答の仕組みが解明され、将来的に医療分野での応用が期待される。例えば、細胞の機械的環境を制御することで、再生医療や創薬などに役立つ可能性がある。また、メカノセンサー分子の異常が引き起こす疾患の理解や治療法の開発にもつながると考えられる。
|