2023 Fiscal Year Final Research Report
Generalizations of modules over vertex algebras and their tensor products
Project/Area Number |
21K03172
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Tokyo City University (2022-2023) Hokkaido University (2021) |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 頂点代数 / 加群 / 自己同型群 / テンソル積 |
Outline of Final Research Achievements |
Let V be a vertex algebra of countable dimension and G a finite automorphism group of V. We consider a G-stable finite set S consisting of irreducibly twisted V-modules, and take a direct sum M of all irreducibly modules in S. The semisimple associative algebra A defined by G and S and the fixed point subalgebra V^G act naturally on M, and we show a Schur-Weyl type duality for their actions. As an application, we show that any irreducible twisted V-module is a completely reducible V^G-module.
|
Free Research Field |
頂点代数
|
Academic Significance and Societal Importance of the Research Achievements |
Vを頂点代数,GをVの自己同型群としたとき,Gによって固定されるVの元の全体V^GはVの部分代数となる.固定部分代数V^G加群は,よい性質をもつ頂点代数の構成への応用があるため,この分野の重要な研究対象となっている.既約V^G加群は,既約ツイステッドV加群の部分加群として全て得ることが出来ると予想されている.この問題に関連して,任意の既約ツイステッドV加群は完全可約V^G加群であることを示した.
|