• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Representation theory of elliptic quantum toroidal algebras and its application to integrable systems

Research Project

  • PDF
Project/Area Number 21K03191
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionAichi Institute of Technology

Principal Investigator

OSHIMA KAZUYUKI  愛知工業大学, 工学部, 教授 (30547980)

Project Period (FY) 2021-04-01 – 2024-03-31
KeywordsElliptic analogue / Quantum toroidal algebra / representaiton / vertex operator / W algebra
Outline of Final Research Achievements

We introduce an elliptic analogue of quantum toroidal algebras which are an affinization of quantum affine algebras. Quantum affine algebras play an important role in solvable lattice models or integrable systems. We study some applications for integrable systems using the representation theories of the elliptic quantum toroidal algebras.
Quantum toroidal algebras can be defined for any simple Lie algebras, among others, quantum toroidal algebra for type A is most interesting because it admits quntum deformation parameter and one more parameter. Considering an elliptic analogue, the elliptic quantum toroidal algebra for A type has 3 parameter including the elliptic deformation parameter, which we show the relation between the elliptic quantum toroidal algebra and 5 dimensional or 6 dimensional Gauge theories.

Free Research Field

Mathematical Physics

Academic Significance and Societal Importance of the Research Achievements

可解格子模型や可積分系で重要な役割を果たしているアフィン量子群の自然な拡張を考えることは重要である.本研究はアフィン量子群のアフィン化である量子トロイダル代数と,アフィン量子群の楕円化である楕円量子群との両面を併せ持った自然な拡張である.楕円量子トロイダル代数においても,有限次元表現やフォック表現など基本的な表現を構成することが可能であり,それらのテンソル積上に頂点作用素を構成することによりW代数を導出するなど,可積分系への応用が可能であることを示した.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi